Fluctuations, Saturation and Diffractive Excitation

Christoffer Flensburg

Department of Theoretical Physics
Lund University

Diffraction 2010, Otranto 10-15 September 2010

Work done with Gösta Gustafson.
Introduction
The Lund Dipole Cascade Model
Fluctuations

Content

➤ Diffractive excitation: Good–Walker vs Tripple-Regge.

➤ Extending Good–Walker into the Tripple-Regge regime.

➤ Fluctuations, Saturation and Diffractive excitation in DIPSY.

➤ Comparison of Good–Walker and Tripple-Regge.
Content

- Diffractive excitation: Good–Walker vs Tripple-Regge.

- Extending Good–Walker into the Tripple-Regge regime.

- Fluctuations, Saturation and Diffractive excitation in DIPSY.

- Comparison of Good–Walker and Tripple-Regge.
Content

- Diffractive excitation: Good–Walker vs Tripple-Regge.

- Extending Good–Walker into the Tripple-Regge regime.

- Fluctuations, Saturation and Diffractive excitation in DIPSY.

- Comparison of Good–Walker and Tripple-Regge.
Content

- Diffractive excitation: Good–Walker vs Tripple-Regge.

- Extending Good–Walker into the Tripple-Regge regime.

- Fluctuations, Saturation and Diffractive excitation in DIPSY.

- Comparison of Good–Walker and Tripple-Regge.
Diffractive excitation

Often treated by two mechanisms:

- Low mass: Good–Walker
 - Incoming projectile superposition of interaction eigenstates.
 - Diffractive excitation from fluctuations in interaction eigenvalues.
 - Used mainly at low excited masses M_X.

- Medium and high mass: Tripple-Regge
 - Reggeons that couple to the target, projectile and each other.
 - Diffractive excitation from the Tripple-Regge couplings.
 - Most used for medium and high excited masses M_X.
Diffractive excitation

Often treated by two mechanisms:

- **Low mass**: Good–Walker
 - Incoming projectile superposition of interaction eigenstates.
 - Diffractive excitation from fluctuations in interaction eigenvalues.
 - Used mainly at low excited masses M_X.

- **Medium and high mass**: Tripple-Regge
 - Reggeons that couple to the target, projectile and each other.
 - Diffractive excitation from the Tripple-Regge couplings.
 - Most used for medium and high excited masses M_X.
Diffractive excitation

Often treated by two mechanisms:

- **Low mass**: Good–Walker
 - Incoming projectile superposition of interaction eigenstates.
 - Diffractive excitation from fluctuations in interaction eigenvalues.
 - Used mainly at low excited masses M_X.

- **Medium and high mass**: Tripple-Regge
 - Reggeons that couple to the target, projectile and each other.
 - Diffractive excitation from the Tripple-Regge couplings.
 - Most used for medium and high excited masses M_X.
Extending Good–Walker to high M_X

The problem:
- Fluctuations in the pomeron ladders are not included.
- BFKL ladders have very large fluctuations.

The solution, Lund Dipole Cascade model:
- Use BFKL dipoles in transverse space.
- Generates cascades for the entire rapidity range.
- Gets the BFKL fluctuations naturally.
- Saturation limits fluctuations in dense cascades.
- Monte Carlo implementation: DIPSY.
Extending Good–Walker to high M_X

- The problem:
 - Fluctuations in the pomeron ladders are not included.
 - BFKL ladders have very large fluctuations.

- The solution, Lund Dipole Cascade model:
 - Use BFKL dipoles in transverse space.
 - Generates cascades for the entire rapidity range.
 - Gets the BFKL fluctuations naturally.
 - Saturation limits fluctuations in dense cascades.
 - Monte Carlo implementation: DIPSY.
Extending Good–Walker to high M_X

The problem:

- Fluctuations in the pomeron ladders are not included.
- BFKL ladders have very large fluctuations.

The solution, Lund Dipole Cascade model:

- Use BFKL dipoles in transverse space.
- Generates cascades for the entire rapidity range.
- Gets the BFKL fluctuations naturally.
- Saturation limits fluctuations in dense cascades.
- Monte Carlo implementation: DIPSY.
Good–Walker formalism

Incoming mass eigenstate:

\[\psi_{\text{in}} = \sum_n c_n \phi_n \]

\(\phi_n \) diffractive scattering eigenstates, with eigenvalues \(T_n \).

Elastic amplitude:

\[A_{\text{el}} = \langle \psi_{\text{in}} | T | \psi_{\text{in}} \rangle = \sum_n c_n^2 T_n = \langle T \rangle \]

\[d\sigma_{\text{el}} / d^2 b = \langle T \rangle^2 \]

The diffractive amplitude to the state \(X \) can also be calculated.

\(\sigma_{\text{diff ex}} \) comes from the fluctuations in \(T \)!

\[A_{\text{diff,x}} = \langle \psi_{\text{in}} | T | \psi_X \rangle \]

\[d\sigma_{\text{diff}} / d^2 b = \sum_X \langle \psi_{\text{in}} | T | \psi_X \rangle^2 = \langle \psi_{\text{in}} | T^2 | \psi_{\text{in}} \rangle = \langle T^2 \rangle \]

\[d\sigma_{\text{diff ex}} / d^2 b = d\sigma_{\text{diff}} / d^2 b - d\sigma_{\text{el}} / d^2 b = \langle T^2 \rangle - \langle T \rangle^2 \]
Good–Walker formalism

Incoming mass eigenstate:

\[\Psi_{\text{in}} = \sum_n c_n \phi_n \]

\(\phi_n \) diffractive scattering eigenstates, with eigenvalues \(T_n \).

Elastic amplitude:

\[A_{\text{el}} = \langle \Psi_{\text{in}} | T | \Psi_{\text{in}} \rangle = \sum_n c_n^2 T_n = \langle T \rangle \]

\[d\sigma_{\text{el}}/d^2b = \langle T \rangle^2 \]

The diffractive amplitude to the state \(X \) can also be calculated.

\(\sigma_{\text{diff ex}} \) comes from the fluctuations in \(T \)!

\[A_{\text{diff},X} = \langle \Psi_{\text{in}} | T | \Psi_X \rangle \]

\[d\sigma_{\text{diff}}/d^2b = \sum_X \langle \Psi_{\text{in}} | T | \Psi_X \rangle^2 = \langle \Psi_{\text{in}} | T^2 | \Psi_{\text{in}} \rangle = \langle T^2 \rangle \]

\[d\sigma_{\text{diff ex}}/d^2b = d\sigma_{\text{diff}}/d^2b - d\sigma_{\text{el}}/d^2b = \langle T^2 \rangle - \langle T \rangle^2 \]
Good–Walker formalism

Incoming mass eigenstate:

\[\psi_{\text{in}} = \sum_n c_n \phi_n \]

\(\phi_n \) diffractive scattering eigenstates, with eigenvalues \(T_n \).

Elastic amplitude:

\[A_{\text{el}} = \langle \psi_{\text{in}} | T | \psi_{\text{in}} \rangle = \sum_n c_n^2 T_n = \langle T \rangle \]

\[d\sigma_{\text{el}}/d^2b = \langle T \rangle^2 \]

The diffractive amplitude to the state \(X \) can also be calculated. \(\sigma_{\text{diff ex}} \) comes from the fluctuations in \(T ! \)

\[A_{\text{diff},X} = \langle \psi_{\text{in}} | T | \psi_X \rangle \]

\[d\sigma_{\text{diff}}/d^2b = \sum_X \langle \psi_{\text{in}} | T | \psi_X \rangle^2 = \langle \psi_{\text{in}} | T^2 | \psi_{\text{in}} \rangle = \langle T^2 \rangle \]

\[d\sigma_{\text{diff ex}}/d^2b = d\sigma_{\text{diff}}/d^2b - d\sigma_{\text{el}}/d^2b = \langle T^2 \rangle - \langle T \rangle^2 \]
Introducing Good–Walker formalism

Fluctuations

The Lund Dipole Cascade model

Diffraction

Good–Walker formalism

Incoming mass eigenstate:

\[\Psi_{\text{in}} = \sum_n c_n \phi_n \]

\(\phi_n \) diffractive scattering eigenstates, with eigenvalues \(T_n \).

Elastic amplitude:

\[A_{\text{el}} = \langle \Psi_{\text{in}} | T | \Psi_{\text{in}} \rangle = \sum_n c_n^2 T_n = \langle T \rangle \]

\[d\sigma_{\text{el}} / d^2 b = \langle T \rangle^2 \]

The diffractive amplitude to the state \(X \) can also be calculated.

\(\sigma_{\text{diff ex}} \) comes from the fluctuations in \(T \)!

\[A_{\text{diff},X} = \langle \Psi_{\text{in}} | T | \Psi_X \rangle \]

\[d\sigma_{\text{diff}} / d^2 b = \sum_X \langle \Psi_{\text{in}} | T | \Psi_X \rangle^2 = \langle \Psi_{\text{in}} | T^2 | \Psi_{\text{in}} \rangle = \langle T^2 \rangle \]

\[d\sigma_{\text{diff ex}} / d^2 b = d\sigma_{\text{diff}} / d^2 b - d\sigma_{\text{el}} / d^2 b = \langle T^2 \rangle - \langle T \rangle^2 \]
The diffractive eigenstates

- A colour singlet exchange will give a rapidity gap.

virtual cascade inelastic int. elastic scatt. diffractive exc.
The Lund Dipole Cascade

The Lund model is a generalisation of Mueller’s dipole model, with the following improvements:

- Includes NLL BFKL effects.
- Includes non-linear saturation effects in the cascade.
- Includes confinement effects.

Needs valence states to start the cascade:

- Protons are model with a triangle of dipoles. Soft QCD!
- Virtual photons in DIS is a single dipole. Hard QCD!

Implemented in a Monte Carlo: DIPSY.
The Lund Dipole Cascade Model

The Lund model is a generalisation of Mueller’s dipole model, with the following improvements:

- Includes NLL BFKL effects.
- Includes non-linear saturation effects in the cascade.
- Includes confinement effects.

Needs valence states to start the cascade:

- Protons are model with a triangle of dipoles. Soft QCD!
- Virtual photons in DIS is a single dipole. Hard QCD!

Implemented in a Monte Carlo: DIPSY.
The Lund Dipole Cascade

The Lund model is a generalisation of Mueller’s dipole model, with the following improvements:

- Includes NLL BFKL effects.
- Includes non-linear saturation effects in the cascade.
- Includes confinement effects.

Needs valence states to start the cascade:

- Protons are model with a triangle of dipoles. Soft QCD!
- Virtual photons in DIS is a single dipole. Hard QCD!

Implemented in a Monte Carlo: DIPSY.
The Lund Dipole Cascade

The Lund model is a generalisation of Mueller’s dipole model, with the following improvements:

- Includes NLL BFKL effects.
- Includes non-linear saturation effects in the cascade.
- Includes confinement effects.

Needs valence states to start the cascade:

- Protons are model with a triangle of dipoles. Soft QCD!
- Virtual photons in DIS is a single dipole. Hard QCD!

Implemented in a Monte Carlo: DIPSY.
Example cascade

Evolves both valence states up to a certain rapidity Y_0, where T is calculated.
Example cascade

Evolves both valence states up to a certain rapidity Y_0, where T is calculated.
Example cascade

Evolves both valence states up to a certain rapidity Y_0, where T is calculated.
Example cascade

Evolves both valence states up to a certain rapidity Y_0, where T is calculated.
Example cascade

Evolves both valence states up to a certain rapidity Y_0, where T is calculated.
What does Diffraction mean for us?

Needed frame: many different definitions around. This is for our model.

- Depends on interaction frame Y_0!
- Colour singlet exchange in interaction frame, ie rapidity gap covering Y_0.
- Includes all excited masses $M_X < e^{Y_0} \cdot \text{GeV}$.
- No overlapping excitations in double diffraction.

Now ready to study diffraction in the Lund Dipole Model!
What does Diffraction mean for us?

Needed frame: many different definitions around. This is for our model.

- Depends on interaction frame Y_0!
- *Colour singlet exchange in interaction frame, ie rapidity gap covering Y_0.*
- Includes all excited masses $M_X < e^{Y_0} \cdot GeV$.
- No overlapping excitations in double diffraction.

Now ready to study diffraction in the Lund Dipole Model!
What does Diffraction mean for us?

Needed frame: many different definitions around. This is for our model.

- Depends on interaction frame Y_0!
- Colour singlet exchange in interaction frame, ie rapidity gap covering Y_0.
- Includes all excited masses $M_X < e^{Y_0} \cdot GeV$.
- No overlapping excitations in double diffraction.

Now ready to study diffraction in the Lund Dipole Model!
Diffractive cross sections

- Cross sections are integrated over all lower masses $M_X < e^{Y_p} \cdot \text{GeV}$.
- Differential cross section $d\sigma/dY$ is the derivative.
- Gray areas are data from Tevatron.
Fluctuations

The origin of the diffractive excitation in the Good–Walker formalism lies in the distribution of interaction probabilities.

- Each pair of cascade produce a single interaction amplitude F.
- Multiple interaction amplitude $T = 1 - e^{-F}$.
- The fluctuations $\langle T^2 \rangle - \langle T \rangle^2$ determines the diffractive cross section.
- Average is over cascades.
- Study the frequency P of different F and T to understand diffraction.
- Look in mid-rapidity, ie Y_0 in com rest frame.
The origin of the diffractive excitation in the Good–Walker formalism lies in the distribution of interaction probabilities.

- Each pair of cascade produce a single interaction amplitude F.
- Multiple interaction amplitude $T = 1 - e^{-F}$.
- The fluctuations $\langle T^2 \rangle - \langle T \rangle^2$ determines the diffractive cross section.
- Average is over cascades.
- Study the frequency P of different F and T to understand diffraction.
- Look in mid-rapidity, ie Y_0 in com rest frame.
P(F) in DIS ($Q^2 = 14$)

- $F \ll 1$, so $F \approx T$.
- $P(F)$ can be parametrised by a power $F^{-\rho}$, freeze-out for low F.
- ρ between 1.6 and 1.8 for different b, W and Q.
- Wide distribution \rightarrow high $\sigma_{\text{diff ex}} / \sigma_{\text{tot}}$.
P(F) in DIS \((Q^2 = 14)\)

- \(F \ll 1\), so \(F \approx T\).
- \(P(F)\) can be parametrised by a power \(F^{-\rho}\), freeze-out for low \(F\).
- \(\rho\) between 1.6 and 1.8 for different \(b\), \(W\) and \(Q\).
- Wide distribution \(\rightarrow\) high \(\sigma_{\text{diff ex}}/\sigma_{\text{tot}}\).
\(P(F) \) in \(pp \)

- \(P(F) \) can be parametrised by \(F^p e^{-aF} \).
- \(a \sim 1, \ p \) between \(-0.7\) and \(1.5\).
- Wide distribution. Low \(b \) and high energy goes far out in \(F \).
- \(F \) not smaller than \(1 \rightarrow \) saturation important.
- \(F \rightarrow T = 1 - e^{-F} \).
\(P(F) \) in \(pp \)

- \(P(F) \) can be parametrised by \(F^p e^{-aF} \).
- \(a \sim 1, \ p \) between \(-0.7\) and \(1.5\).
- Wide distribution. Low \(b \) and high energy goes far out in \(F \).
- \(F \) not smaller than \(1 \) \(\rightarrow\) saturation important.
- \(F \to T = 1 - e^{-F} \).
The Lund Dipole Cascade Model

Fluctuations

Comparison with Tripple-Regge

DIS

pp

Impact Parameter Profile

P(T) in pp

High F pushed in just below $T = 1$.

Low b, high energy peaked at $T = 1$: small fluctuations.

High b peaked at $T = 0$: small fluctuations.

Medium b evenly spread out from 0 to 1: large fluctuations.
P(T) in pp

- High F pushed in just below $T = 1$.
- Low b, high energy peaked at $T = 1$: small fluctuations.
- High b peaked at $T = 0$: small fluctuations.
- Medium b evenly spread out from 0 to 1: large fluctuations.
The Lund Dipole Cascade Model
Fluctuations
Comparison with Tripple-Regge

\(\text{P}(T) \) in \(pp \)

- High \(F \) pushed in just below \(T = 1 \).
- Low \(b \), high energy peaked at \(T = 1 \): small fluctuations.
- High \(b \) peaked at \(T = 0 \): small fluctuations.
- Medium \(b \) evenly spread out from 0 to 1: large fluctuations.
The Lund Dipole Cascade Model
Fluctuations
Comparison with Triple-Regge

\(P(T) \) in \(pp \)

- High \(F \) pushed in just below \(T = 1 \).
- Low \(b \), high energy peaked at \(T = 1 \): small fluctuations.
- High \(b \) peaked at \(T = 0 \): small fluctuations.
- Medium \(b \) evenly spread out from 0 to 1: large fluctuations.
Impact parameter profile in pp

- Saturation suppresses fluctuations at low b:
 $\langle T^2 \rangle \approx \langle T \rangle^2 \approx 1$.
- Diffractive excitation lives in a ring where $T \approx 0.5$.
- Slower asymptotic energy growth $\sim \ln s$ compared to total and elastic $\sim \ln^2 s$.
Compare to Goulianos

DIPSY isn’t supposed to be used below ~ 100 GeV, but...

- At ~ 20 GeV, the unitary effect is weak, even at $b = 0$.

![Graph showing total single diffraction cross section vs. \sqrt{s} (GeV)]
Tripple-Regge Formalism

- **Bare pomerons:**
 - Pomerons couple to the target and projectile with strength $\beta(t)$.
 - Tripple-pomeron coupling $g_{3P}(t)$.
 - Pomeron trajectory $\alpha(t) = 1 + \varepsilon + \alpha' t$

- \[\sigma_{\text{tot}} = \beta^2(0) s^{\alpha(0)-1} \equiv \sigma_0^{p\bar{p}} s^\varepsilon \]

- \[\frac{d\sigma_{\text{el}}}{dt} = \frac{1}{16\pi} \beta^4(t) s^{2(\alpha(t)-1)} \]

- \[M_X^2 \frac{d\sigma_{\text{SD}}}{dtd(M_X^2)} = \frac{1}{16\pi} \beta^2(t) \beta(0) g_{3P}(t) \left(\frac{s}{M_X^2} \right)^{2(\alpha(t)-1)} (M_X^2)^\varepsilon \]

- Higher order effects and saturation different in different models.
Trippl-Regge Formalism

- **Bare pomerons:**
 - Pomerons couple to the target and projectile with strength $\beta(t)$.
 - Trippl-pomeron coupling $g_{3P}(t)$.
 - Pomeron trajectory $\alpha(t) = 1 + \varepsilon + \alpha' t$
 - $\sigma_{\text{tot}} = \beta^2(0) s^{\alpha(0)-1} \equiv \sigma_0^{p\bar{p}} s^\varepsilon$
 - $\frac{d\sigma_{\text{el}}}{dt} = \frac{1}{16\pi} \beta^4(t) s^{2(\alpha(t)-1)}$
 - $M_X^2 \frac{d\sigma_{\text{SD}}}{dtd(M_X^2)} = \frac{1}{16\pi} \beta^2(t) \beta(0) g_{3P}(t) \left(\frac{s}{M_X^2} \right)^{2(\alpha(t)-1)} (M_X^2)^\varepsilon$

- Higher order effects and saturation different in different models.
Tripple-Regge Formalism

- **Bare pomerons:**
 - Pomerons couple to the target and projectile with strength $\beta(t)$.
 - Tripple-pomeron coupling $g_{3P}(t)$.
 - Pomeron trajectory $\alpha(t) = 1 + \varepsilon + \alpha' t$
 - $\sigma_{\text{tot}} = \beta^2(0)s^{\alpha(0)-1} \equiv \sigma_{0}^{\bar{p}\bar{p}}s^{\varepsilon}$
 - $\frac{d\sigma_{\text{el}}}{dt} = \frac{1}{16\pi}\beta^4(t)s^2(\alpha(t)-1)$
 - $M_X^2 \frac{d\sigma_{\text{SD}}}{dt d(M_X^2)} = \frac{1}{16\pi}\beta^2(t)\beta(0)g_{3P}(t)\left(\frac{s}{M_X^2}\right)^{2(\alpha(t)-1)}(M_X^2)^{\varepsilon}$

- Higher order effects and saturation different in different models.
Strategy for comparison

► *Compare only to bare pomerons to avoid model dependence.*

► Use DIPSY without saturation: no saturation in cascade, and use F rather than T as amplitude.

► Look at energy dependence of total, elastic and diffractive cross sections.

► See if the Tripple-Regge equations can describe DIPSYs energy dependence.

► Tune $\varepsilon, \alpha', \beta(t)$ and $g_{3P}(t)$ to fit to DIPSY.

► Compare parameters to other Tripple-Regge models.
Strategy for comparison

- **Compare only to bare pomerons to avoid model dependence.**
- Use DIPSY without saturation: no saturation in cascade, and use \(F \) rather than \(T \) as amplitude.
- Look at energy dependence of total, elastic and diffractive cross sections.
- See if it the Tripple-Regge equations can describe DIPSYs energy dependence.
- Tune \(\varepsilon, \alpha', \beta(t) \) and \(g_{3P}(t) \) to fit to DIPSY.
- Compare parameters to other Tripple-Regge models.
Strategy for comparison

- Compare only to bare pomeron to avoid model dependence.
- Use DIPSY without saturation: no saturation in cascade, and use F rather than T as amplitude.
- Look at energy dependence of total, elastic and diffractive cross sections.
- See if the Tripple-Regge equations can describe DIPSYs energy dependence.
- Tune $\varepsilon, \alpha', \beta(t)$ and $g_{3P}(t)$ to fit to DIPSY.
- Compare parameters to other Tripple-Regge models.
Results

\[\alpha(0) = 1 + \varepsilon = 1.21, \quad \alpha' = 0.2 \text{ GeV}^{-2}, \]
\[\sigma_{0}^{p\bar{p}} = \beta^{2}(0) = 12.6 \text{ mb}, \quad b_{0,\text{el}} = 8 \text{ GeV}^{-2}, \]
\[g_{3P}(t) = \text{const.} = 0.3 \text{ GeV}^{-1}. \]
Comparison to other Models bare parameters

 - $\alpha(0) = 1.21$, $\alpha' = 0.2\text{GeV}^{-1}$

 - $\alpha(0) = 1.3$, $\alpha' \leq 0.05\text{GeV}^{-1}$

 - $\alpha_h(0) = 1.35$, $\alpha'_h = 0.08\text{GeV}^{-1}$
 - $\alpha_s(0) = 1.15$, $\alpha'_s = 0.14\text{GeV}^{-1}$

 - $\alpha(0) = 1.335$, $\alpha' = 0.01\text{GeV}^{-1}$

 - $\alpha(0) = 1.12$, $\alpha' = 0.22\text{GeV}^{-1}$

 - $\alpha(0) = 1.11$, $\alpha' = 0.26\text{GeV}^{-1}$
Summary

- **Good–Walker** can normally only describe low mass excitations.
- The **Lund Dipole Cascade** model can extend the Good–Walker formalism to large masses for $\gamma^* p$ and pp.
- Fluctuations, and thus $\sigma_{\text{diff ex}}$, are strongly suppressed by unitarity in pp.
- Diffractive excitation in pp is an expanding ring in b.
- **DIPSY** without saturation agrees very well with Tripple-Regge for a bare pomeron.
- corresponds to simple pole with $\alpha(0) = 1.21$ and $\alpha' = 0.2$. (With saturation cross section grows $\sim s^{0.1}$ up to 50 TeV.)
- Produces exclusive final states as well (soon to be published).
CDF

Pseudorapidity distribution and N_{ch} in towards region.

Pseudorapidity distribution at $\sqrt{s} = 1800$ GeV

$dN_{ch}/d\eta$

CDF data
MC (TestFull1800)

N_{ch} (toward) for min-bias

N_{ch}

MC/data

CDF data
MC (TestFull1800)
CDF

Angular distribution and multiplicity frequency.

\[\langle p_{\text{sum}}^{\perp} \rangle \text{ vs. } \Delta \phi \text{ from leading jet } (p_{\text{lead}}^{\perp} > 2 \text{ GeV}) \]

\[\text{Charged multiplicity at } \sqrt{s} = 1800 \text{ GeV, } |\eta| < 1, p_{T} > 0.4 \text{ GeV} \]
Track p_T and $\sum E_T$ distributions.

CDF data

MC (TestFull1800)

$\frac{d^3\sigma}{dp_T d\eta d\phi} / (mb/GeV^2)$

$p_T, |\eta| < 1, p_\perp > 0.4 \text{ GeV}$

$\frac{d^3\sigma}{dE_T d\eta d\phi} / (mb/GeV)$

$\sum E_T, |\eta| < 1$
Rapidity distribution and Multiplicity frequency.
Heavy Ions

Central Au-Au collision in $y-x_T$ space.
Some sample results

\(\text{pp and } \gamma^*p: \text{ total, elastic and diffractive cross section.} \)
Collide a single dipole with a cascade of nucleons. Can again use same tools as for pp.

Here follows a sample event just as proof of concept:
Or better seen in a y-p_T plot:
Evolution in rapidity

A colour dipole emits a gluon in transverse space with probability

\[
\frac{dP}{dy} = \frac{\bar{\alpha}}{2\pi} d^2 r_2 \frac{r_{01}^2}{r_{02}^2 r_{12}^2}
\]

Equivalent to LL BFKL.
Interaction

A Born level calculation gives the collision amplitude for a pair of dipoles from different states:

\[f_{ij} = \frac{\alpha^2 s}{2} \ln^2 \left(\frac{r_{13}r_{24}}{r_{14}r_{23}} \right). \]

With the eikonal approximation, the total unitarised probability then becomes

\[t \equiv 1 - e^{-\sum f_{ij}}. \]
Modifications in DIPSY

Energy conservation

- Keep track of p_μ for all partons.
- Small dipoles \leftrightarrow high p_T.
- Gives dynamic cutoff for small emissions.

Non-linear $2 \rightarrow 2$ swing:

- Saturation in evolution.

Confinement

- Supression of too large dipoles.