Measurement of the Longitudinal Structure Function in Diffraction

F^D_L

David Šálek
(on behalf of the H1 Collaboration)

Institute of Particle and Nuclear Physics
Charles University, Prague

Diffraction Conference
Otranto, Italy
September 10 - 15, 2010
Diffractive DIS

• diffractive reduced cross section

\[
\sigma_r^D = F_2^D - \frac{y^2}{Y_+} F_L^D
\]

\[
Y_+ = 1 + (1 - y)^2
\]

\[
\frac{d^3 \sigma_{ep \to eXY}}{dx_{IP} d\beta dQ^2} = \frac{2\pi\alpha^2}{\beta Q^4} Y_+ \sigma_r^D(x_{IP}, \beta, Q^2)
\]
• diffractive reduced cross section

\[
\sigma_r^D = F_2^D - \frac{y^2}{Y_+} F_L^D
\]

\[
Y_+ = 1 + (1 - y)^2
\]

• this analysis focuses on the diffractive longitudinal proton structure function
QCD Factorisation in Diffraction

- diffractive parton densities
 - extracted from the inclusive measurements
 - x_{IP} dependence factorised

- NLO QCD fit (β and Q^2 dependence)
- singlet parametrisation:
 $$z\Sigma(z, Q_0^2) = A_q z^B_q (1 - z)^C_q$$

- 2 gluon parametrisations:
 - Fit A
 $$z g(z, Q_0^2) = A_g (1 - z)^C_g$$
 - Fit B
 $$z g(z, Q_0^2) = A_g$$
QCD Factorisation in Diffraction

- inclusive measurements constrain quarks
- gluons are constrained weakly from the scaling violations

\[\frac{d \sigma_r^D}{d \ln Q^2} \]

- diffractive dijets in DIS
 - compatible with the parton densities from H1 2006 DPDF Fits
 - QCD factorisation holds
 - Fit B preferred
QCD Factorisation in Diffraction

- inclusive measurements constrain quarks
- gluons are constrained weakly from the scaling violations
 \[\frac{d \sigma^D}{d \ln Q^2} \]

- diffractive dijets in DIS
 - compatible with the parton densities from H1 2006 DPDF Fits
 - QCD factorisation holds
 - Fit B preferred

- diffractive charm production
 - low statistics
QCD Factorisation in Diffraction

- inclusive measurements constrain quarks
- gluons are constrained weakly from the scaling violations

\[
\frac{d \sigma^D}{d \ln Q^2}
\]

- diffractive dijets in DIS
 - compatible with the parton densities from H1 2006 DPDF Fits
 - QCD factorisation holds
 - Fit B preferred

- diffractive charm production
 - low statistics

- FLD measurement
 - probes low \(x_{IP} \) and \(\beta \) region inaccessible by dijets and \(D^* \)

\[
F_L^D \sim x \, g(x)
\]
last months of HERA running were dedicated to the measurements of F_L and F_L^D

→ low energy runs

- $E_p = 460$ GeV
- $E_p = 575$ GeV

nominal proton beam energy

- $E_p = 820$ GeV
- $E_p = 920$ GeV
Measurement Strategy

- analysis closely follows the measurement of the inclusive F_L by H1 (published as DESY-08-053)

- Rosenbluth plots
 - separate the structure functions F_L^D and F_2^D by combining measurements at different y (for the fixed x_{IP}, β, Q^2)

\[
\sigma_r^D = F_2^D - \frac{y^2}{Y_+} F_L^D \quad Y_+ = 1 + (1 - y)^2
\]

\[Q^2 = x_{IP} \beta y s\]

- data at different centre-of-mass energy needed
 - 2 pb$^{-1}$ $E_p = 820$ GeV
 - 21 pb$^{-1}$ $E_p = 920$ GeV
 - 6 pb$^{-1}$ $E_p = 460$ GeV
 - 4 pb$^{-1}$ $E_p = 575$ GeV
Data Selection and H1 Detector

- **Diffractive selection:**
 - large rapidity gap $\to \eta_{\text{max}} < 3.3$

- **F_L^D selection:**
 - $Q^2 > 2.5$ GeV2
 - high y region sensitive to $F_L^D \to y < 0.9$
 - kinematic variables reconstructed from the scattered positron
 \[Q^2 = 4 E_e E'_e \cos^2 \frac{\theta_e}{2} \quad y = 1 - \frac{E'_e}{E_e} \sin^2 \frac{\theta_e}{2} \approx 1 - \frac{E'_e}{E_e} \]
 - low scattered positron energy $\to E'_e > 3.4$ GeV
 - high level of photoproduction background
 - challenging measurement requiring precise positron identification
 - cluster (Spacal calorimeter)
 - track (central tracker and/or Backward Silicon Tracker)
Background at High y

- data at high y contain photoproduction background
 - scattered positron escapes the central detector through the beam-pipe
 - one of the hadronic final state particles is mis-identified as the scattered positron
 - background from hadronic particles is almost charge symmetric
 \[\frac{N_{bg}^+}{N_{bg}^-} \sim 1 \]

- background subtraction using the charge of the scattered positron candidate

\[
N^+ = \text{signal events} + \text{background from } \pi^+ \\
N^- = \text{background from } \pi^-
\]

\[N_{signal} = N^+ - N^- \]
data with positive charge
background determined from the data with negative charge
signal Monte Carlo (based on H1 2006 DPDF Fit B) + background from data

- **Monte Carlo does not simulate** $F_L^D \rightarrow$ it overshoots data at high y

$$\sigma_r^D (F_L^D = 0) = F_2^D$$
Normalisation of Data Sets

- data cross section is corrected for proton dissociation
 - rapidity gap selection accepts events with dissociated protons up to $M_Y = 1.6$ GeV (acceptance of the forward detectors near the beam pipe)
 - 7% uncertainty → can it be reduced?

- use as constraint that F_2^D is independent of the beam energy
 - no significant contribution from F_L^D at low y (high β)
 - data cross sections normalised to H1 2006 DPDF Fit B at $Q^2 = 13.5$ GeV2, $0.28 < \beta < 0.42$ in order to give the same F_2^D
 - normalisation changed by < 4%
 - uncertainty reduced to 2.5%

\[
\sigma_r^D = F_2^D - \frac{y^2}{Y_+} F_L^D
\]
\[
Q^2 = x_{IP} \beta y s
\]
Diffractive Reduced Cross Sections

- $7 < Q^2 < 32 \text{ GeV}^2$
- $E_p = 920, 575, 460 \text{ GeV}$

- Cross sections agree with H1 2006 DPDF Fit B
- Contribution of non-zero F_L^D observed → fall at low β
- Prediction for $\sigma_r^D(F_L^D = 0) = F_2^D$ overestimates data
Diffractive Reduced Cross Sections

• $2.5 < Q^2 < 7 \text{ GeV}^2$

• $E_p = 820, 575, 460 \text{ GeV}$

- data at $E_p = 820 \text{ GeV}$ from the publication DESY-06-049
 - cover larger β range
 - used to determine H1 2006 DPDF Fit A and Fit B
 - the Fits are known to underestimate data at $Q^2 < 8.5 \text{ GeV}^2$
Sensitivity to F^D_L

- data cross sections are sensitive to F^D_L

$$\sigma^D_r = F^D_2 - \frac{y^2}{Y^+} F^D_L$$

$$Q^2 = x_{IP} \beta y s$$
F_L^D Fits

- Linear fit in the Rosenbluth plots to obtain F_2^D and F_L^D

$$\sigma_r^D = F_2^D - \frac{y^2}{Y_+} F_L^D$$

- Highest sensitivity to F_L^D at high y (low β)
F^D_L Results

- F^D_L is measured in the kinematic region:
 \[2.5 < Q^2 < 32 \text{ GeV}^2 \]
 \[0.001 < x_{IP} < 0.01 \]
- Measurements are corrected to:
 \[Q^2 = 4 \text{ and } 13.5 \text{ GeV}^2 \]
 \[x_{IP} = 0.003 \]

- Significantly non-zero results (more than 5\(\sigma\))
- Consistent with the H1 2006 DPDF Fits
 - Based on DPDF's and factorisation
 - Extrapolation of the Fits shown for $Q^2 = 4 \text{ GeV}^2$
$F_L^D \text{ Results}$

- F_2^D prediction gives the upper bound for F_L^D in the range of validity of the Fits.

![Graph showing $F_L^D (x_{ip}, \beta, Q^2)$ for H1 Preliminary results.](graph.png)

$Q^2 = 13.5 \text{ GeV}^2$

$x_{ip} = 0.003$
QCD Fits and Higher Twist Effects

- higher twist longitudinal contribution to diffraction at high β implies large F_L^D (e.g. BEKW)
- F_2^D dominated by F_L^D at high β and low Q^2
 \[F_2 = F_T + F_L \]
- QCD fits from H1 only consider the leading twist and do not predict large F_L^D

- measurement is also consistent with K. Golec-Biernat et al.
- no sensitivity to the twist 4 contribution in the current β range
Summary

- the first F_L^D measurement
- significant non-zero value (more than 5σ)
- a new, independent test of the diffractive gluon density
- verification of the QCD factorisation in diffractive DIS
 - dijets
 - D^*
 - F_L^D

- F_L^D measured at $Q^2 = 13.5 \text{ GeV}^2$, $x_{IP} = 0.003$ and $\beta \sim 0.1$
- $Q^2 = 4 \text{ GeV}^2$, $x_{IP} = 0.003$ and $\beta \sim 0.03$