Geometric Scaling

David Šálek

Charles University

September 11, 2010
First Observation

- original study
 - $\sigma^{\gamma^*p}(Q^2, x) = \sigma^{\gamma^*p}(\tau)$ where $\tau = Q^2 \times (x/x_0)^{\lambda}$
stochastic extension of Balitsky-Kovchegov equation for dipole amplitude

\[\frac{\partial T}{\partial Y} = \alpha_s \left[\chi(-\partial L) T - T^2 \right] \]

- \(\chi \) is the BFKL kernel, \(L = \log Q^2 \), \(Y = \log \frac{1}{x} \)
- BFKL equation when \(\alpha_s \) constant and \(T^2 \) neglected

- \(\alpha_s \) constant
 - solution does not depend independently on \(Y \) and \(\log Q^2 \) but a combination of both \(\rightarrow \) scaling
 - Fixed Coupling: \(\tau = L - \lambda Y \)
stochastic extension of Balitsky-Kovchegov equation

\[\frac{\partial T}{\partial Y} = \alpha_s(Q^2) \left[\chi(-\partial_L) T - T^2 \right] \]

\(\alpha_s \) running

- \(\alpha_s \sim 1/\log Q^2 \)
- \(T^2 \) is expected to follow the scaling
- but both \(L \partial T / \partial Y \) and \(\chi(-\partial_L) \) cannot follow the same scaling

<table>
<thead>
<tr>
<th>scaling</th>
<th>(\partial_L T)</th>
<th>(L \partial T / \partial Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(L - \lambda \sqrt{Y}))</td>
<td>(\frac{\partial T}{\partial L}(L - \lambda \sqrt{Y}) = \frac{\partial T}{\partial L}) scaling</td>
<td>(L \frac{\partial T}{\partial Y} = \frac{\lambda L}{2\sqrt{Y}} T) approx. scaling</td>
</tr>
<tr>
<td>(T(L - \lambda Y/L))</td>
<td>(\frac{\partial T}{\partial L}(L - \lambda Y/L) = \frac{\lambda Y}{L^2} \frac{\partial T}{\partial L}) approx. scaling</td>
<td>(L \frac{\partial T}{\partial Y}(L - \lambda Y/L) = -\lambda \frac{\partial T}{\partial Y}) scaling</td>
</tr>
</tbody>
</table>
stochastic extension of Balitsky-Kovchegov equation

\[\frac{\partial T}{\partial Y} = \alpha_s(Q^2) \left[\chi(-\partial L) T - T^2 \right] \]

\(\alpha_s \) running

\(\alpha_s \sim 1/\log Q^2 \)

\(T^2 \) is expected to follow the scaling

but both \(L \partial T / \partial Y \) and \(\chi(-\partial L) \) cannot follow the same scaling

two solutions:

- Running Coupling I: \(\tau = L - \lambda \sqrt{Y} \)
- Running Coupling II: \(\tau = L - \lambda Y/L \) (see G. Beuf, arXiv:0803.2167)
Scalings in DIS

- extended Balitsky-Kovchegov equation

\[
\frac{\partial T}{\partial Y} = \alpha_S \left[\chi(-\partial L)T - T^2 + \sqrt{\alpha_S^2 \kappa T} \nu(L, Y) \right]
\]

- \(\alpha_S\) constant, \(\nu\)
 - \(\nu\) is a gaussian noise corresponding to the fluctuation of number of gluons
 - corresponds to pomeron loops (gluon splitting)
 - Diffusive Scaling: \((L - \lambda Y)/\sqrt{Y}\)
Quality Factor Method

- test different scaling laws $\tau = \tau(Q^2, x; \lambda)$ on data $\sigma \sim F_2/Q^2$
- quality factor method
 - normalise data sets $v_i = \log(\sigma_i)$ and scaling laws $u_i = \tau_i(\lambda)$ between 0 and 1
 - order in u_i
 - define quality factor

$$QF(\lambda) = \left[\sum_i \frac{(v_i - v_{i-1})^2}{(u_i - u_{i-1})^2 + \epsilon^2} \right]^{-1}$$

- fit λ to maximase QF

Scaling Tests in DIS

- combined F_2 measurements from H1/ZEUS
- stay in perturbative domain: $4 \leq Q^2 \leq 150$ GeV2
- avoid region where valence quarks dominate: $x \leq 10^{-2}$
- avoid high y region where F_L contributes: $y \leq 0.6$
- 117 data points
Quality Factor

- comparison of $1/QF$ for FC, RCI, RCII, DS
Comparison of Different Scalings

- value of parameters and QF for $Q^2 \geq 4 \text{ GeV}^2$

<table>
<thead>
<tr>
<th>scaling</th>
<th>λ</th>
<th>$1/QF$</th>
<th>$\tau = \log Q^2 - \lambda \log(\frac{1}{x})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Coupling</td>
<td>0.31</td>
<td>150.2</td>
<td>$\tau = \log Q^2 - \lambda \log(\frac{1}{x})$</td>
</tr>
<tr>
<td>Running Coupling I</td>
<td>1.61</td>
<td>137.9</td>
<td>$\tau = \log Q^2 - \lambda \sqrt{\log(\frac{1}{x})}$</td>
</tr>
<tr>
<td>Running Coupling II</td>
<td>2.76</td>
<td>124.3</td>
<td>$\tau = \log(Q^2/0.2^2) - \lambda \frac{\log(\frac{1}{x})}{\log(Q^2/0.2^2)}$</td>
</tr>
<tr>
<td>Diffusive Scaling</td>
<td>0.31</td>
<td>210.7</td>
<td>$\tau = \frac{\log Q^2}{\sqrt{\log \frac{1}{x}}} - \lambda \log(\frac{1}{x})$</td>
</tr>
</tbody>
</table>

- FC, RCI and RCII favoured, DS disfavoured
- no significant improvement with additional parameters (Q_0, Y_0)
- results compatible with our previous study using older data (arXiv:0803.2186)
Running Coupling I: \[\tau = \log \frac{Q^2}{Q_0^2} - \lambda \log \left(\frac{1}{x} \right) \]
dilute regime (no saturation) \(\rightarrow \tau > 0 \)
\(\tau \) can be shifted by changing \(Q_0 \)
Fits to HERA Data

- fit to HERA data inspired by RCI

\[
\tau = \log\left(\frac{Q^2}{Q_0^2}\right) - \lambda \sqrt{\log\left(\frac{1}{x}\right) - Y_0}
\]

\[
\sigma = N \exp\left(-\alpha \tau\right) \exp\left(\frac{-\beta \tau^{3/2}}{(\log 1/x - Y_0)^{1/4}}\right)
\]

- fit formula deduced from the dipole amplitude with saturation (Gregory Soyez) with asymptotic expression of the Airy function which is a solution of Balitsky-Kovchegov equation

- 6 fit parameters: \(\lambda, \alpha, \beta, Q_0, Y_0, N\)

- explicit moderate scaling violation: \((\log 1/x - Y_0)^{1/4}\)
 - fits performed with and without the scaling violation term (predicted by the dipole model)

- \(\tau\) must be positive in the dilute regime
Fit Results

- fit variables:

\[
\tau = \log\left(\frac{Q^2}{Q_0^2}\right) - \lambda \sqrt{\log\left(\frac{1}{x}\right) - Y_0}
\]

\[
\sigma = N \exp(-\alpha \tau) \exp\left(\frac{-\beta \tau^{3/2}}{(\log 1/x - Y_0)^{1/4}}\right)
\]

- Fit I: \(\chi^2 = 130.1\) for 117 points (\(\chi^2/dof = 1.2\))
- Fit II (without the scaling violation term): \(\chi^2 = 119.0\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fit I</th>
<th>Fit II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>1.54 ± 0.02</td>
<td>1.54 ± 0.02</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.34 ± 0.01</td>
<td>0.18 ± 0.01</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.24 ± 0.01</td>
<td>0.18 ± 0.01</td>
</tr>
<tr>
<td>(Q_0)</td>
<td>0.079 ± 0.01</td>
<td>0.064 ± 0.01</td>
</tr>
<tr>
<td>(Y_0)</td>
<td>-1.46 ± 0.02</td>
<td>0.50 ± 0.02</td>
</tr>
<tr>
<td>(N)</td>
<td>0.51 ± 0.01</td>
<td>0.72 ± 0.01</td>
</tr>
</tbody>
</table>
• good description of HERA data at low Q^2 and low x
• fit does not describe the turn-over of σ_r at low x (high y)

$$\sigma_r = F_2 - \frac{y^2}{1+(1-y)^2} F_L$$

• model of F_L using RCI needed (in progress)
fair description of data at lower Q^2

parameterisation of F_L needed in order to describe high y data
Extrapolation to Q^2

- high x not well described
- valence quarks needed
Other Fits

- similar formula for RCII:

\[
\tau = \log\left(\frac{Q^2}{Q_0^2}\right) - \lambda \frac{\log\left(\frac{1}{x}\right) - Y_0}{\log\left(\frac{Q^2}{Q_0^2}\right)}
\]

\[
\sigma = N \exp(-\alpha \tau) \exp\left(\frac{-\beta \tau^{3/2}}{(\log 1/x - Y_0)^{1/4}}\right)
\]

\[\chi^2 = 190.4 \rightarrow \text{worse than RCI}\]

- similar formula for FC:

\[
\tau = \log\left(\frac{Q^2}{Q_0^2}\right) - \lambda \log\left(\frac{1}{x}\right)
\]

\[
\sigma = N \exp(-\alpha \tau) \exp\left(\frac{-\beta \tau^2}{(\log 1/x - Y_0)}\right)
\]

\[\chi^2 = 156.4 \rightarrow \text{worse than RCI}\]

\[\chi^2 = 230.5 \text{ without the scaling violation term}\]
Conclusion

- different scalings studied in F_2 data: Fixed Coupling, Running Coupling I and II, Diffusive Scaling
- Fixed Coupling, Running Coupling I and II lead to a good description of data using the QF formalism
- Diffusive Scaling disfavoured

- fit of F_2 data using RCI (parameterised with or without moderate scaling violations) leads to a good description of data at low Q^2 and low x
- fits disfavour RCII and FC

- outlook:
 - fits of lower Q^2 data in the saturation region
 - fits of high y data including F_L parameterisation
 - comparison with numerical solution of BK equation with α_S running