Meccanica Quantistica 2010-2011

14 Febbraio 2012

Esercizio 1

Sia dato un oscillatore armonico unidimensionale di massa m e pulsazione ω . Si consideri lo stato:

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + \alpha |1\rangle \right) \,, \quad \alpha \in \mathbb{C} \,.$$

Si determini α usando la condizione di normalizzazione e sapendo che

$$\langle \psi | \hat{x} | \psi \rangle = \sqrt{\frac{\hbar}{8m\omega}} \,.$$

Si calcolino poi le dispersioni $\Delta \hat{x}^2$ e $\Delta \hat{p}^2$ e si verifichi il principio di indeterminazione.

[10 punti]

Esercizio 2

Due particelle distinguibili di spin 1/2 interagiscono con l'Hamiltoniana

$$H = aS_1^y S_2^z \,,$$

essendo S_1^y , S_2^z rispettivamente gli operatori relativi alla componente y dello spin della prima particella e alla componente z dello spin della seconda particella ed essendo a una costante positiva.

- a) Trovare autoket e autovalori dell'Hamiltoniana (suggerimento: usare la base che diagonalizza simultaneamente gli operatori S_1^z , S_2^z).
- b) Se a t=0 il sistema si trova nell'autoket simultaneo di S_1^z all'autovalore $\frac{\hbar}{2}$ e di S_2^z all'autovalore $\frac{\hbar}{2}$, trovare lo stato del sistema al tempo t.

[10 punti]

Esercizio 3

Si consideri una buca di potenziale infinita unidimensionale di larghezza a (ossia il potenziale è zero per 0 < x < a e infinito altrove). Il sistema sia perturbato da un potenziale della forma

$$V(x) = \epsilon A \,, \quad 0 < x < \frac{a}{2} \,, \quad V(x) = 0 \,, \quad \frac{a}{2} < x < a \,, \quad \epsilon \ll 1 \,.$$

- 1) Si determini lo spostamento al primo ordine in ϵ del livello energetico n-esimo.
- 2) Si scriva l'espressione per lo spostamento al secondo ordine in ϵ del livello energetico fondamentale.

[10 punti]

$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega)), \quad \psi_n(x) = \sqrt{\frac{2}{a}}\sin\frac{n\pi x}{a}$$

16 Gennaio 2012

Esercizio 1

In uno spazio vettoriale a tre dimensioni sia definita la base ortonormale costituita dai ket $|i\rangle$ (i=1,2,3). Si definiscano gli operatori $\hat{A}=|1\rangle\langle 2|+|2\rangle\langle 3|$ e $\hat{B}=|2\rangle\langle 1|+|3\rangle\langle 2|$.

- a): Trovare quale/i relazione/i debba/debbano intercorrere tra i coefficienti α e β perché l'operatore $\hat{C}[\alpha;\beta] = \alpha \hat{A} + \beta \hat{B}$ possa corrispondere ad una quantità osservabile [**N.B.**: si determino α e β in modo che $|\alpha|^2 + |\beta|^2 = 1$, prima assumendo α reale, successivamente assumendo α immaginario puro: in questo modo vengono determinate due osservabili indipendenti];
- b): Scelti α e β come nei due casi elencati al punto a):, trovare autovalori ed autoket di $\hat{C}[\alpha; \beta]$ in ciascun caso;
 - c): Verificare se le due osservabili indipendenti determinate al punto a): sono compatibili.

[10 punti]

Esercizio 2

Si consideri un oscillatore armonico unidimensionale di massa m e pulsazione ω .

Si supponga che al tempo t = 0 il sistema si trovi nello stato

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) ,$$

essendo $|n\rangle$ autoket dell'hamiltoniana: $\hat{H}|n\rangle = \hbar\omega(n+1/2)|n\rangle$.

- a) Si calcolino i valori medi di posizione e impulso nello stato $|\psi_0\rangle$.
- b) Si calcolino i valori medi di posizione e impulso al tempo t usando lo schema di Schroedinger.
- c) Facoltativo: Si calcolino i valori medi di posizione e impulso al tempo t usando lo schema di Heisenberg.

[10 punti]

Esercizio 3

Due particelle distinguibili di spin 1/2 interagiscono con l'Hamiltoniana

$$H = aS_1^x S_2^z, \quad a > 0,$$

essendo S_1^x l'operatore relativo alla componente x dello spin della prima particella e S_2^z l'operatore relativo alla componente z dello spin della seconda particella.

- a) Trovare autoket e autovalori dell'Hamiltoniana.
- b) Se a t=0 il sistema si trova nello stato $|+\rangle|-\rangle$, essendo $S^z|\pm\rangle=\pm\frac{\hbar}{2}|\pm\rangle$, trovare lo stato del sistema al tempo t.

Suggerimento: lavorare nella base in cui si diagonalizzano simultaneamente S_1^z e S_2^z .

[10 punti]

$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$

16 Gennaio 2012

Esercizio 1

Si consideri un oscillatore armonico unidimensionale di massa m e pulsazione $\omega.$

Si supponga che al tempo t=0 il sistema si trovi nello stato

$$|\psi_0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) ,$$

essendo $|n\rangle$ autoket dell'hamiltoniana: $\hat{H}|n\rangle = \hbar\omega(n+1/2)|n\rangle$.

- a) Si calcolino i valori medi di posizione e impulso nello stato $|\psi_0\rangle$.
- b) Si calcolino i valori medi di posizione e impulso al tempo t usando lo schema di Schroedinger.
- c) Facoltativo: Si calcolino i valori medi di posizione e impulso al tempo t usando lo schema di Heisenberg.

[10 punti]

Esercizio 2

Due particelle distinguibili di spin 1/2 interagiscono con l'Hamiltoniana

$$H = aS_1^x S_2^z \,, \quad a > 0 \,,$$

essendo S_1^x l'operatore relativo alla componente x dello spin della prima particella e S_2^z l'operatore relativo alla componente z dello spin della seconda particella.

- a) Trovare autoket e autovalori dell'Hamiltoniana.
- b) Se a t=0 il sistema si trova nello stato $|+\rangle|-\rangle$, essendo $S^z|\pm\rangle=\pm\frac{\hbar}{2}|\pm\rangle$, trovare lo stato del sistema al tempo t.

Suggerimento: lavorare nella base in cui si diagonalizzano simultaneamente S_1^z e S_2^z .

[10 punti]

Esercizio 3

Si consideri una buca di potenziale infinita di larghezza a, ossia una particella di massa m soggetta ad un potenziale

$$V(x) = 0$$
 per $0 \le x \le a$, $V(x) = +\infty$ per $x < 0$ e $x > a$.

Il sistema sia perturbato da un potenziale della forma

$$W(x) = \epsilon A \delta \left(x - \frac{a}{2} \right) ,$$

essendo A una costante e $\epsilon \ll 1$. Si determini:

- a) Lo spostamento al primo ordine in ϵ del livello energetico n-esimo.
- b) Lo spostamento al secondo ordine in ϵ del livello fondamentale.

[10 punti]

$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega)), \quad \psi_n(x) = \sqrt{\frac{2}{a}}\sin\frac{n\pi x}{a}$$

18 Novembre 2011

Esercizio 1

In uno spazio vettoriale a due dimensioni sia definita la base ortonormale costituita dai ket $|i\rangle$ (i=1,2). Si definiscano gli operatori $\hat{A}=|1\rangle\langle 1|-|2\rangle\langle 2|$ e $\hat{B}=i\{|1\rangle\langle 2|-|2\rangle\langle 1|$ }.

- a) Calcolare il commutatore $[\hat{A}, \hat{B}]$. Quale conclusione si può trarre dal risultato?
- b) Trovare autovalori ed autoket di \hat{A} e \hat{B} ;
- c) Alla luce della risposta al punto b), verificare la correttezza della risposta data al punto a).

[10 punti]

Esercizio 2

Sia dato un oscillatore armonico unidimensionale e si consideri lo stato al tempo t=0:

$$|\psi_0\rangle = e^{\frac{ia\hat{p}}{\hbar}}|0\rangle, \quad \alpha \in \mathbb{R}.$$

a) Si calcolino i valori medi:

$$\langle \psi_0 | \hat{x} | \psi_0 \rangle$$
, $\langle \psi_0 | \hat{p} | \psi_0 \rangle$.

- b) Si calcolino i valori medi della posizione e dell'impulso al tempo t usando lo schema di Heisenberg.
- c) Al tempo t=0 si verifichi il principio di indeterminazione.

[10 punti]

Esercizio 3

Due particelle distinguibili di spin 1/2 interagiscono con l'Hamiltoniana

$$H = aS_1^x S_2^x$$
,

essendo S_1^x , S_2^x gli operatori relativi alle componenti x dello spin rispettivamente della prima e della seconda particella ed essendo a una costante positiva.

- a) Trovare autoket e autovalori dell'Hamiltoniana (suggerimento: usare la base che diagonalizza simultaneamente gli operatori S_1^z , S_2^z).
- b) Se a t=0 il sistema si trova nell'autoket simultaneo di S_1^z all'autovalore $\frac{\hbar}{2}$ e di S_2^z all'autovalore $\frac{\hbar}{2}$, trovare lo stato del sistema al tempo t.

[10 punti]

$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x}+i\hat{p}/(m\omega))\,,\quad \hat{J}_{\pm}|\,j,m> = \hbar\sqrt{(j\mp m)(j\pm m+1)}|\,j,m\pm 1>$$

18 Novembre 2011

Esercizio 1

Sia dato un oscillatore armonico unidimensionale e si consideri lo stato al tempo t=0:

$$|\psi_0\rangle = e^{\frac{ia\hat{p}}{\hbar}}|0\rangle, \quad \alpha \in \mathbb{R}.$$

a) Si calcolino i valori medi:

$$\langle \psi_0 | \hat{x} | \psi_0 \rangle$$
, $\langle \psi_0 | \hat{p} | \psi_0 \rangle$.

- b) Si calcolino i valori medi della posizione e dell'impulso al tempo t usando lo schema di Heisenberg.
- c) Al tempo t = 0 si verifichi il principio di indeterminazione.

[10 punti]

Esercizio 2

Due particelle distinguibili di spin 1/2 interagiscono con l'Hamiltoniana

$$H = aS_1^x S_2^x \,,$$

essendo S_1^x , S_2^x gli operatori relativi alle componenti x dello spin rispettivamente della prima e della seconda particella ed essendo a una costante positiva.

- a) Trovare autoket e autovalori dell'Hamiltoniana (suggerimento: usare la base che diagonalizza simultaneamente gli operatori S_1^z , S_2^z).
- b) Se a t=0 il sistema si trova nell'autoket simultaneo di S_1^z all'autovalore $\frac{\hbar}{2}$ e di S_2^z all'autovalore $\frac{\hbar}{2}$, trovare lo stato del sistema al tempo t.

[10 punti]

Esercizio 3

Si consideri un oscillatore armonico unidimensionale di massa m e pulsazione ω . Il sistema sia perturbato da un potenziale della forma

$$V(x) = \epsilon(x + \sqrt{\frac{\hbar}{m\omega}}x^2),$$

essendo ϵ una costante 'piccola'. Si determini:

- a) Lo spostamento al primo ordine in ϵ del livello energetico n-esimo
- b) Lo spostamento al secondo ordine in ϵ del livello energetico n-esimo

[10 punti]

$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega)), \quad \hat{J}_{\pm}|j,m> = \hbar\sqrt{(j\mp m)(j\pm m+1)}|j,m\pm 1>$$

Meccanica Quantistica - Studenti anni precedenti

16 settembre 2011

Esercizio 1

In uno spazio vettoriale a tre dimensioni sia definita la base ortonormale costituita dai ket $|i\rangle$ (i = 1, 2, 3). Si definiscano gli operatori $\hat{O}_1 = |1\rangle\langle 1| - |2\rangle\langle 2|$ e $\hat{B} = i\{|1\rangle\langle 3| - |3\rangle\langle 1|\}$.

- a): Calcolare in commutatore $[\hat{O}_1, \hat{O}_2]$;
- **b):** Trovare autovalori ed autoket di \hat{O}_1 e \hat{O}_2 ;
- c): Scrivere \hat{O}_1 nella base di autoket di \hat{O}_2 . È il risultato coerente con la risposta data al punto a):?.

[10 punti]

Esercizio 2

Sia data una particella di spin 1/2 e si consideri l'operatore $\vec{S} \cdot \vec{n}$, essendo \vec{S} l'operatore di spin e $\vec{n} = (n_x, n_y, n_z)$ un versore.

a) Trovare gli elementi di matrice di $\vec{S} \cdot \vec{n}$ nella base che diagonalizza S_z .

Si considerino poi due particelle distinguibili di spin 1/2 e si supponga che siano nello stato (singoletto) $|\psi_s\rangle$ in cui il loro spin totale è zero.

b) Dimostrare che:

$$\langle \psi_s | (\vec{S}_1 \cdot \vec{n}_1)(\vec{S}_2 \cdot \vec{n}_2) | \psi_s \rangle = -\frac{\hbar^2}{4} \vec{n}_1 \cdot \vec{n}_2 \tag{1}$$

[10 punti]

Esercizio 3

Considerare i quattro operatori:

$$q_1 = \frac{x + \frac{a^2}{\hbar} p_y}{\sqrt{2}}, \quad p_1 = \frac{p_x - \frac{\hbar}{a^2} y}{\sqrt{2}}, \quad q_2 = \frac{x - \frac{a^2}{\hbar} p_y}{\sqrt{2}}, \quad p_2 = \frac{p_x + \frac{\hbar}{a^2} y}{\sqrt{2}}$$
 (2)

essendo a una costante reale.

- a) Trovare e commentare le regole di commutazione $[q_i,q_j],[p_i,p_j],[q_i,p_j].$
- b) Dimostrare che la componente z del momento angolare orbitale si scrive

$$L_z = \frac{a^2}{2\hbar}(p_1^2 - p_2^2) + \frac{\hbar}{2a^2}(q_1^2 - q_2^2)$$
(3)

c) Ricordando la forma degli autovalori dell'Hamiltoniana dell'oscillatore armonico, dimostrare, usando il risultato del punto b), che gli autovalori di L_z sono pari a $\hbar m$, con m intero.

[10 punti]

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}, \quad \hat{J}_{\pm}|j,m\rangle = \hbar \sqrt{(j \mp m)(j \pm m + 1)}|j,m \pm 1\rangle$$
(4)

16 Settembre 2011

Esercizio 1

Sia data una particella di spin 1/2 e si consideri l'operatore $\vec{S} \cdot \vec{n}$, essendo \vec{S} l'operatore di spin e $\vec{n} = (n_x, n_y, n_z)$ un versore.

a) Trovare gli elementi di matrice di $\vec{S} \cdot \vec{n}$ nella base che diagonalizza S_z .

Si considerino poi due particelle distinguibili di spin 1/2 e si supponga che siano nello stato (singoletto) $|\psi_s\rangle$ in cui il loro spin totale è zero.

b) Dimostrare che:

$$\langle \psi_s | (\vec{S}_1 \cdot \vec{n}_1) (\vec{S}_2 \cdot \vec{n}_2) | \psi_s \rangle = -\frac{\hbar^2}{4} \vec{n}_1 \cdot \vec{n}_2$$

[10 punti]

Esercizio 2

Considerare i quattro operatori:

$$q_1 = \frac{x + \frac{a^2}{\hbar} p_y}{\sqrt{2}}, \quad p_1 = \frac{p_x - \frac{\hbar}{a^2} y}{\sqrt{2}}, \quad q_2 = \frac{x - \frac{a^2}{\hbar} p_y}{\sqrt{2}}, \quad p_2 = \frac{p_x + \frac{\hbar}{a^2} y}{\sqrt{2}}$$

essendo a una costante reale.

- a) Trovare e commentare le regole di commutazione $[q_i, q_j], [p_i, p_j], [q_i, p_j]$.
- b) Dimostrare che la componente z del momento angolare orbitale si scrive

$$L_z = \frac{a^2}{2\hbar}(p_1^2 - p_2^2) + \frac{\hbar}{2a^2}(q_1^2 - q_2^2)$$

c) Ricordando la forma degli autovalori dell'Hamiltoniana dell'oscillatore armonico, dimostrare, usando il risultato del punto b), che gli autovalori di L_z sono pari a $\hbar m$, con m intero.

[10 punti]

Esercizio 3

Si consideri una buca di potenziale infinita rettangolare: $0 \le x \le a, \ 0 \le y \le b$. Il sistema sia perturbato da un potenziale della forma

$$V(x,y) = \epsilon$$
 per $0 < x < \frac{a}{2}$, $0 < y < \frac{b}{2}$; $V(x,y) = 0$ altrove,

essendo ϵ una costante 'piccola'. Si determini:

- a) Lo spostamento al prim'ordine in ϵ del livello energetico fondamentale
- b) Gli spostamenti al prim'ordine in ϵ del primo livello eccitato.

[10 punti]

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}, \quad \hat{J}_{\pm}|j,m> = \hbar \sqrt{(j \mp m)(j \pm m + 1)}|j,m \pm 1>$$

Meccanica Quantistica I prova di recupero

14 luglio 2011

- 1. In uno spazio vettoriale a tre dimensioni sia definita la base ortonormale costituita dai ket $|i\rangle$ (i=1,2,3). Si definiscano gli operatori $\hat{A}=|1\rangle\langle 1|-|3\rangle\langle 3|$ e $\hat{B}=|1\rangle\langle 3|+|3\rangle\langle 1|$.
 - a): Calcolare il commutatore $[\hat{A}, \hat{B}]$. Quale conclusione si può trarre dal risultato?;
 - **b):** Trovare autovalori ed autoket di \hat{A} e \hat{B} ;
 - c): Alla luce della risposta al punto b), verificare la correttezza della risposta data al punto a).

[10 punti]

2. Scrivere le regole di commutazione, $[\hat{L}_i, \hat{x}_j]$, $[\hat{L}_i, \hat{p}_j]$, tra le tre componenti del momento angolare orbitale $\vec{L} = \vec{x} \wedge \vec{p}$ e le tre componenti dell'operatore coordinata \vec{x} e dell'operatore impulso \vec{p} . Usare questi dati per calcolare i commutatori

$$[\hat{L}_3, \vec{x} \cdot \vec{p}], \quad [\hat{L}_3, \vec{x}^2], \quad [\hat{L}_3, \vec{p}^2]$$
 (1)

e giustificare sulla base di considerazioni fisiche i risultati ottenuti.

[10 punti]

3. Due particelle distinguibili di spin 1/2 interagiscono con l'Hamiltoniana

$$H = a\vec{S}_1 \cdot \vec{S}_2 + b\hbar S_1^z, \tag{2}$$

essendo \vec{S}_1 , \vec{S}_2 gli operatori di spin rispettivamente della prima e della seconda particella ed essendo a, b due costanti positive.

- a) Trovare autoket e autovalori dell'Hamiltoniana.
- b) Se a t=0 il sistema si trova nello stato $|S_1^z=\frac{\hbar}{2}\rangle\otimes |S_2^z=\frac{\hbar}{2}\rangle$, trovare lo stato del sistema al tempo t.
- c) Facoltativo: In riferimento al punto a), discutere il limite $b \to 0$.

[10 punti]

$$\hat{J}_{\pm}|j,m> = \hbar\sqrt{(j\mp m)(j\pm m+1)}|j,m\pm 1>$$
 (3)

14 Luglio 2011

Esercizio 1

Scrivere le regole di commutazione, $[\hat{L}_i, \hat{x}_j]$, $[\hat{L}_i, \hat{p}_j]$, tra le tre componenti del momento angolare orbitale $\vec{L} = \vec{x} \wedge \vec{p}$ e le tre componenti dell'operatore coordinata \vec{x} e dell'operatore impulso \vec{p} . Usare questi dati per calcolare i commutatori

$$[\hat{L}_3, \vec{x} \cdot \vec{p}], \quad [\hat{L}_3, \vec{x}^2], \quad [\hat{L}_3, \vec{p}^2]$$

e giustificare sulla base di considerazioni fisiche i risultati ottenuti.

[10 punti]

Esercizio 2

Due particelle distinguibili di spin 1/2 interagiscono con l'Hamiltoniana

$$H = a\vec{S}_1 \cdot \vec{S}_2 + b\hbar S_1^z \,,$$

essendo \vec{S}_1 , \vec{S}_2 gli operatori di spin rispettivamente della prima e della seconda particella ed essendo a, b due costanti positive.

- a) Trovare autoket e autovalori dell'Hamiltoniana.
- b) Se a t=0 il sistema si trova nello stato | $S_1^z=\frac{\hbar}{2}\rangle\otimes |S_2^z=\frac{\hbar}{2}\rangle$, trovare lo stato del sistema al tempo t.
 - c) Facoltativo: In riferimento al punto a), discutere il limite $b \to 0$.

[10 punti]

Esercizio 3

Si consideri un oscillatore armonico unidimensionale di massa m e frequenza ω . La sua hamiltoniana sia perturbata da un potenziale della forma $V = \lambda \hat{x}$, essendo λ una costante 'piccola'. Si determini:

- a) Lo spostamento al primo ordine in λ del livello energetico n-esimo
- b) Lo spostamento al secondo ordine in λ del livello energetico n-esimo

L'Hamiltoniana totale del sistema (oscillatore armonico più perturbazione V) può essere diagonalizzata esattamente. Giustificare quindi i risultati trovati in a), b) sulla base della diagonalizzazione esatta dell'Hamiltoniana totale.

[10 punti]

$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x}+i\hat{p}/(m\omega))\,,\quad \hat{J}_{\pm}|\,j,m> = \hbar\sqrt{(j\mp m)(j\pm m+1)}|\,j,m\pm 1>$$

Programma del corso relativo agli AA.AA. 2009-10 e precedenti

7 Aprile 2011

Esercizio 1

Una particella quantistica di massa m in una dimensione, soggetta ad una forza costante F, è preparata al tempo t=0 nello stato $|\Psi_0\rangle$ con corrispondente funzione d'onda $\langle x|\Psi_0\rangle=\Psi_0(x)=ce^{-Ax^2}$, con A costante complessa

- a): Dire come deve essere A perché la funzione d'onda sia normalizzabile. Successivamente, trovare la corretta costante di normalizzazione (c);
 - **b):** Calcolare, al tempo t, il valor medio di \hat{x} e di \hat{p} , $\langle \hat{x} \rangle_t$, $\langle \hat{p} \rangle_t$;
 - c): Calcolare, al tempo t, il valor medio dell'energia sullo stato $|\Psi(t)\rangle$.

Facoltativo: Calcolare, al tempo t, il valor medio di \hat{x}^2 e di \hat{p}^2 , $\langle \hat{x}^2 \rangle_t$, $\langle \hat{p}^2 \rangle_t$, ed usare il risultato ottenuto per verificare il principio di indeterminazione, $\langle \Delta \hat{x}^2 \rangle_t \langle \Delta \hat{p}^2 \rangle_t \geq \frac{\hbar^2}{4}$.

[10 punti]

Esercizio 2

Scrivere le regole di commutazione $[\hat{L}_i, \hat{p}_j]$ tra le tre componenti del momento angolare orbitale $\vec{L} = \vec{x} \wedge \vec{p}$ e le tre componenti dell'operatore impulso \vec{p} . Usare questo dato per scrivere l'operatore

$$\hat{p}_i(\theta) = e^{-i\frac{\theta}{\hbar}\hat{L}_3}\hat{p}_i e^{i\frac{\theta}{\hbar}\hat{L}_3}, \quad i = 1, 2, 3,$$

in termini di \hat{p}_i e di θ .

Dato infine il ket $\mid \vec{p} \rangle$ tale che $\hat{p}_i \mid \vec{p} \rangle = p_i \mid \vec{p} \rangle$, far vedere che il ket 'ruotato':

$$e^{i\frac{\theta}{\hbar}\hat{L}_3} \mid \vec{p} \rangle$$

è ancora autoket dell'operatore impulso \vec{p} e scriverne i relativi autovalori.

[10 punti]

Esercizio 3

Due particelle distinguibili di spin 1/2 interagiscono con l'Hamiltoniana

$$H = a\vec{S}_1 \cdot \vec{S}_2 + b(S_1^z)^2 + c\hbar S_1^z$$

essendo \vec{S}_1 , \vec{S}_2 gli operatori di spin rispettivamente della prima e della seconda particella ed essendo a, b, c tre costanti positive.

- a) Trovare autoket e autovalori dell'Hamiltoniana.
- b) Se a t=0 il sistema si trova nello stato $\mid S_1^z=\frac{\hbar}{2}\rangle\otimes\mid S_2^z=-\frac{\hbar}{2}\rangle$, trovare lo stato del sistema al tempo t nel caso in cui c=0.
 - c) Facoltativo: Rispondere alla domanda b) nel caso generale in cui $c \neq 0$.

[10 punti]

$$\hat{J}_{\pm}|j,m> = \hbar\sqrt{(j\mp m)(j\pm m+1)}|j,m\pm 1>$$

Meccanica Quantistica Programma del corso relativo all'A.A. 2010-11

7 Aprile 2011

Esercizio 1

Scrivere le regole di commutazione $[\hat{L}_i, \hat{p}_j]$ tra le tre componenti del momento angolare orbitale $\vec{L} = \vec{x} \wedge \vec{p}$ e le tre componenti dell'operatore impulso \vec{p} . Usare questo dato per scrivere l'operatore

$$\hat{p}_i(\theta) = e^{-i\frac{\theta}{\hbar}\hat{L}_3}\hat{p}_i e^{i\frac{\theta}{\hbar}\hat{L}_3}, \quad i = 1, 2, 3,$$

in termini di \hat{p}_i e di θ .

Dato infine il ket | \vec{p} \) tale che \hat{p}_i | \vec{p} \) = p_i | \vec{p} \), far vedere che il ket 'ruotato':

$$e^{i\frac{\theta}{\hbar}\hat{L}_3} \mid \vec{p} \rangle$$

è ancora autoket dell'operatore impulso \vec{p} e scriverne i relativi autovalori.

[10 punti]

Esercizio 2

Due particelle distinguibili di spin 1/2 interagiscono con l'Hamiltoniana

$$H = a\vec{S}_1 \cdot \vec{S}_2 + b(S_1^z)^2 + c\hbar S_1^z$$

essendo \vec{S}_1 , \vec{S}_2 gli operatori di spin rispettivamente della prima e della seconda particella ed essendo a, b, c tre costanti positive.

- a) Trovare autoket e autovalori dell'Hamiltoniana.
- b) Se a t=0 il sistema si trova nello stato $|S_1^z = \frac{\hbar}{2}\rangle \otimes |S_2^z = -\frac{\hbar}{2}\rangle$, trovare lo stato del sistema al tempo t nel caso in cui c=0.
 - c) Facoltativo: Rispondere alla domanda b) nel caso generale in cui $c \neq 0$.

[10 punti]

Esercizio 3

Sia dato un sistema a due livelli la cui hamiltoniana in rappresentazione matriciale abbia la forma seguente:

$$H = \left(\begin{array}{cc} E_1 & \lambda \Delta \\ \lambda \Delta & E_2 \end{array}\right)$$

in cui λ è una costante adimensionale. Si supponga $\lambda \ll 1$.

- a) Sia $E_1 \neq E_2$: trovare gli autovalori dell'Hamiltoniana al primo e secondo ordine in λ , usando la teoria delle perturbazioni. Se invece $E_1 = E_2$, trovare gli autovalori dell'Hamiltoniana al prim'ordine in λ .
 - b) Trovare gli autovalori esatti di H e confrontarli con i valori approssimati di cui al punto a).

[10 punti]

$$\hat{J}_{\pm}|j,m> = \hbar\sqrt{(j\mp m)(j\pm m+1)}|j,m\pm 1>$$

Prova scritta: appello straordinario Meccanica Quantistica

16 novembre 2010

1. La dinamica di una particella quantistica di massa m sia descritta dall'Hamiltoniana

$$\hat{H} = \frac{\hat{p}^2}{2m} - F\hat{x} \quad ,$$

con F costante.

a): Trovare gli operatori coordinata ed impulso al tempo t in rappresentazione di Heisenberg, $\hat{x}_H(t), \hat{p}_H(t)$, in termini degli operatori in rappresentazione di Schrödinger, \hat{x}, \hat{p} ;

b): Assumendo che, al tempo t=0, la particella sia stata creata nello stato $|\Psi_0\rangle$ con corrispondente funzione d'onda $\langle x|\Psi_0\rangle=\Psi_0(x)=\frac{1}{\pi^{\frac{1}{4}}\sigma^{\frac{1}{2}}}e^{-\frac{x^2}{2\sigma^2}}$, con σ costante reale e positiva, usare il risultato ottenuto al punto **b**) per trovare il valor medio di \hat{x} e di \hat{p} al tempo t;

c): Calcolare, al tempo t, il valor medio dell'energia sullo stato $|\Psi(t)\rangle$.

[10 punti]

- 2. Un oscillatore armonico di Hamiltoniana $\hat{H} = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2$ sia stato preparato, al tempo t = 0, nello stato $|\Psi_0\rangle = A\hat{x}^2|0\rangle$, dove \hat{x} è l'operatore coordinata e A è una costante di normalizzazione:
 - a): Determinare la corretta normalizzazione dello stato $|\Psi_0\rangle$ (A), dopodiché calcolare il valor medio su di esso degli operatori \hat{x}, \hat{p} ;
 - b): Calcolare il valor medio, sullo stato $|\Psi_0\rangle$, degli operatori \hat{x}^2, \hat{p}^2 . Successivamente, usare il risultato ottenuto per verificare che risulta soddisfatto il principio di indeterminazione

$$\langle \Psi_0 | (\Delta \hat{x})^2 | \Psi_0 \rangle \langle \Psi_0 | (\Delta \hat{p})^2 | \Psi_0 \rangle \ge \frac{\hbar^2}{4};$$

c): Calcolare il valor medio dell'energia sullo stato $|\Psi_0\rangle$.

Facoltativo: Trovare lo stato del sistema al tempo t, $|\Psi_0(t)\rangle$.

[10 punti]

- 3. Due spin 1/2, \vec{S}_1 , \vec{S}_2 , interagiscono secondo l'Hamiltoniana $\hat{H} = A\vec{S}_1 \cdot \vec{S}_2 BS_{1,z}S_{2,z}$, con A,B costanti positive:
 - a): Trovare gli autovalori di \hat{H} e scriverne i corrispondenti autoket come combinazioni dei prodotti di autoket simultanei di $(\vec{S}_1)^2$, $S_{1,z}$ e di $(\vec{S}_2)^2$, $S_{2,z}$, $|s_1, s_2\rangle$, con $s_1, s_2 = \pm \frac{1}{2}$ e $S_{1,z}|s_1, s_2\rangle = \hbar s_1|s_1, s_2\rangle$, $S_{2,z}|s_1, s_2\rangle = \hbar s_2|s_1, s_2\rangle$;
 - **b):** Supposto che il sistema sia stato preparato, al tempo t=0, nello stato $|\Psi(0)\rangle = |\frac{1}{2}, -\frac{1}{2}\rangle \otimes |\frac{1}{2}, \frac{1}{2}\rangle$, trovare lo stato del sistema al tempo t, $|\Psi(t)\rangle$;
 - c): Assumendo che lo stato iniziale sia stato fissato come al punto b, trovare il valor medio di $S_{1,z}$ al tempo t.

[10 punti]

Formule utili: $a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + i \frac{p}{m\omega} \right)$; $\vec{S}_1 \cdot \vec{S}_2 = \frac{1}{2} [(\vec{S}_1 + \vec{S}_2) - (\vec{S}_1)^2 - (\vec{S}_2)^2]$.

Seconda prova scritta: Meccanica Quantistica

16 Settembre 2010

- 1. Una particella quantistica di massa m, in moto in un campo gravitazionale uniforme con accelerazione pari a g, viene preparata al tempo t=0 nello stato $|\Psi_0\rangle$ con corrispondente funzione d'onda $\langle x|\Psi_0\rangle = \Psi_0(x) = ce^{-\frac{x^2}{2\sigma^2}}$, con σ costante reale e positiva:
 - a): Trovare la corretta costante di normalizzazione (c);
 - **b):** Calcolare, al tempo t, il valor medio di \hat{x} e di \hat{p} , $\langle \hat{x} \rangle_t$, $\langle \hat{p} \rangle_t$;
 - c): Calcolare, al tempo t, il valor medio dell'energia sullo stato $|\Psi(t)\rangle$.

Facoltativo: Calcolare, al tempo t, il valor medio di \hat{x}^2 e di \hat{p}^2 , $\langle \hat{x}^2 \rangle_t$, $\langle \hat{p}^2 \rangle_t$, ed usare il risultato ottenuto per verificare il principio di indeterminazione, $\langle \Delta \hat{x}^2 \rangle_t \langle \Delta \hat{p}^2 \rangle_t \geq \frac{\hbar^2}{4}$.

[10 punti]

- 2. Un oscillatore armonico di Hamiltoniana $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2$ sia stato preparato, al tempo t=0, nello stato $|\Psi_0\rangle = e^{i\frac{\hat{x}}{\lambda}}|0\rangle$, dove \hat{x} è l'operatore coordinata e λ è una costante con le dimensioni di una lunghezza:
 - a): Dire se $|\Psi_0\rangle$ è correttamente normalizzato. Se non lo è, determinarne la norma e, successivamente, calcolare il valor medio su di esso degli operatori \hat{x}, \hat{p} ;
 - b): Calcolare il valor medio, sullo stato $|\Psi_0\rangle$, degli operatori \hat{x}^2, \hat{p}^2 . Successivamente, usare il risultato ottenuto per verificare che risulta soddisfatto il principio di indeterminazione

$$\langle \Psi_0 | (\Delta \hat{x})^2 | \Psi_0 \rangle \langle \Psi_0 | (\Delta \hat{p})^2 | \Psi_0 \rangle \ge \frac{\hbar^2}{4};$$

c): Calcolare il valor medio dell'energia sullo stato $|\Psi_0\rangle$.

Facoltativo: Trovare lo stato del sistema al tempo t, $|\Psi_0(t)\rangle$.

[10 punti]

- 3. Due spin 1/2, \vec{S}_1 , \vec{S}_2 , interagiscono secondo l'Hamiltoniana $\hat{H} = A[S_{1,x}S_{2,x} + S_{1,y}S_{2,y}] BS_{1,z}S_{2,z}$, con A, B costanti positive:
 - a): Trovare gli autovalori di \hat{H} e scriverne i corrispondenti autoket come combinazioni dei prodotti di autoket simultanei di $(\vec{S}_1)^2$, $S_{1,z}$ e di $(\vec{S}_2)^2$, $S_{2,z}$, $|s_1,s_2\rangle$, con $s_1,s_2=\pm$ e $S_{1,z}|s_1,s_2\rangle=s_1\frac{\hbar}{2}|s_1,s_2\rangle$, $S_{2,z}|s_1,s_2\rangle=s_2\frac{\hbar}{2}|s_1,s_2\rangle$;
 - **b):** Supposto che il sistema sia stato preparato, al tempo t=0, nello stato $|\Psi(0)\rangle = |+,-\rangle$, trovare lo stato del sistema al tempo t, $|\Psi(t)\rangle$;
 - c): Assumendo che il sistema sia stato inizializzato come al punto b, trovare il valor medio di $S_{1,z}$ e di $S_{2,z}$ al tempo t.

[10 punti]

Formule utili: $\hat{a} = \sqrt{\frac{m\omega}{2\hbar}} \left(\hat{x} + i \frac{\hat{p}}{m\omega} \right)$.

Seconda prova scritta: Meccanica Quantistica

13 Luglio 2010

- 1. Una particella quantistica, la cui dinamica sia descritta dall'Hamiltoniana $\hat{H} = \frac{\hat{p}^2}{2m} F\hat{x}$ (F costante), sia stata preparata, al tempo t = 0, nello stato $|\Psi_0\rangle$ corrispondente alla funzione d'onda $\langle x|\Psi_0\rangle = \Psi_0(x) = ce^{-\frac{x^2}{2\sigma^2}}$, con σ costante reale e positiva:
 - a): Trovare la corretta costante di normalizzazione (c);
 - **b):** Calcolare, al tempo t, il valor medio di \hat{x} e di \hat{p} , $\langle \hat{x} \rangle_t$, $\langle \hat{p} \rangle_t$;
 - c): Calcolare, al tempo t, il valor medio di \hat{x}^2 e di \hat{p}^2 , $\langle \hat{x}^2 \rangle_t$, $\langle \hat{p}^2 \rangle_t$, ed usare il risultato ottenuto per verificare il principio di indeterminazione, $\langle \Delta \hat{x}^2 \rangle_t \langle \Delta \hat{p}^2 \rangle_t \geq \frac{\hbar^2}{4}$.

[10 punti]

- 2. Un oscillatore armonico di Hamiltoniana $\hat{H} = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2$ sia stato preparato, al tempo t = 0, nello stato coerente $|\Psi_{x_0}\rangle = ce^{x_0\hat{a}^{\dagger}}|0\rangle$, corrispondente ad un autoket dell'operatore di discesa \hat{a} con autovalore x_0 reale:
 - a): Trovare la corretta normalizzazione dello stato (c);
 - b): Calcolare il valor medio, sullo stato $|\Psi_{x_0}\rangle$, degli operatori $\hat{x}, \hat{p}, \hat{x}^2, \hat{p}^2$. Successivamente, usare il risultato ottenuto per verificare che risulta soddisfatto il principio di indeterminazione

$$\langle \Psi_{x_0} | (\Delta \hat{x})^2 | \Psi_{x_0} \rangle \langle \Psi_{x_0} | (\Delta \hat{p})^2 | \Psi_{x_0} \rangle \ge \frac{\hbar^2}{4};$$

c): Calcolare il valor medio dell'energia sullo stato $|\Psi_{x_0}\rangle$.

Facoltativo: Trovare lo stato del sistema al tempo t, $|\Psi_{x_0}(t)\rangle$.

[10 punti]

- 3. Un momento angolare 1, \vec{L} , interagisce con un momento di spin-1/2, \vec{S} , secondo l'Hamiltoniana $\hat{H} = A\vec{L} \cdot \vec{S} \hbar B(L_z + S_z)$, con A, B costanti positive. Siano : $|l\rangle$ ($l = \pm 1, 0$) gli autoket di \vec{L}^2, L_z , con $L_z |l\rangle = \hbar l |l\rangle$ e $|s\rangle$ ($s = \pm \frac{1}{2}$) quelli di \vec{S}^2, S_z , con $S_z |s\rangle = \hbar s |s\rangle$:
 - a): Trovare gli autovalori di \hat{H} e scriverne i corrispondenti autoket come combinazioni dei prodotti di autoket di $L_z, S_z, |l\rangle \otimes |s\rangle$;
 - **b):** Supposto che il sistema sia stato preparato, al tempo t=0, nello stato $|\Psi(0)\rangle = |1\rangle \otimes |-\frac{1}{2}\rangle$, trovare lo stato del sistema al tempo t, $|\Psi(t)\rangle$;
 - c): Usare il risultato del punto \mathbf{b} per determinare il valor medio di L_z al tempo t.

[10 punti]

Formule utili: $a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + i \frac{p}{m\omega} \right)$.

Appello straordinario, prova scritta: Meccanica Quantistica

30 Giugno 2010

- 1. Siano date le tre matrici di Pauli σ_i , i = x, y, z;
 - a): Prese due delle tre matrici, σ_i, σ_j , con $i \neq j (=x, y, z)$, si definisca la matrice $\Sigma_{i,j}(a, b) = a\sigma_i + b\sigma_j$, con a, b numeri complessi non nulli. Trovare, per ogni scelta di i, j, quale relazione debba intercorrere tra $a \in b$ perchè si abbia che e $[\Sigma_{i,j}(a, b)]^2 = 0$;
 - b): Scelti, per ogni $i \neq j$, $a \in b$ come al punto a), verificare che la corrispondente matrice $\Sigma_{i,j}(a,b)$ non è hermitiana e discuterne il significato fisico. Successivamente, calcolare $[\Sigma_{i,j}(a,b), \Sigma_{i,j}^{\dagger}(a,b)]$;
 - c): Trovare, per ogni $i \neq j$, autovalori ed autoket della matrice hermitiana $i[\Sigma_{i,j}(a,b), \Sigma_{i,j}^{\dagger}(a,b)]$. [10 punti]
- 2. Un oscillatore armonico di Hamiltoniana $\hat{H} = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2$ sia stato preparato, al tempo t=0, nello stato $|\Psi(0)\rangle = \frac{1}{\sqrt{2}}\{|0\rangle + ie^{i\alpha}|2\rangle\}$, con α reale:
 - a): Determinare α in modo che $\langle \Psi(0)|\hat{x}|\Psi(0)\rangle$ assuma il massimo valore possibile;
 - b): Trovare lo stato del sistema al tempo t, $|\Psi(t)\rangle$. Successivamente, calcolare $\langle \Psi(t)|\hat{V}|\Psi(t)\rangle$, dove $\hat{V}=\frac{m\omega^2\hat{x}^2}{2}$ è l'operatore energia potenziale. Discutere brevemente il risultato ottenuto in relazione a quello che ci si aspetterebbe di trovare su di uno stato stazionario.

[10 punti]

- 3. Due spin-1/2, \vec{S}_1 , \vec{S}_2 interagiscono secondo l'Hamiltoniana $\hat{H} = AS_{1,x}S_{2,z}$, con A costante reale e positiva.
 - a): Trovare gli autovalori di \hat{H} e scriverne i corrispondenti autoket come combinazioni dei prodotti di autoket di $S_{1,z}, S_{2,z}, |a\rangle_{1,z} |b\rangle_{2,z}$, con $a, b = \pm$;
 - **b):** Supposto che il sistema sia stato preparato, al tempo t=0, nello stato $|\Psi(0)\rangle = |+\rangle_{1,z}|+\rangle_{2,z}$, con $S_{1,z}|+\rangle_{1,z} = \frac{\hbar}{2}|+\rangle_{1,z}$ e $S_{2,z}|+\rangle_{2,z} = \frac{\hbar}{2}|+\rangle_{2,z}$, trovare lo stato del sistema al tempo t, $|\Psi(t)\rangle$;
 - c): Usare il risultato del punto b per determinare il valor medio di $S_{1,z}$ al tempo t.

[10 punti]

Formule utili: $a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + i \frac{p}{m\omega} \right)$.

Appello straordinario, prova scritta: Meccanica Quantistica

14 Aprile 2010

- 1. Siano date le tre matrici di Pauli σ_i , i = x, y, z;
 - a): Prese due delle tre matrici, σ_i, σ_j , con $i \neq j (= x, y, z)$, si definisca la matrice $\Sigma_{i,j}(a,b) = a\sigma_i + b\sigma_j$, con a, b numeri complessi non nulli. Trovare, per ogni scelta di i, j, quale relazione debba intercorrere tra $a \in b$ perchè si abbia che $[\Sigma_{i,j}(a,b)]^2 = 0$;
 - **b):** Scelti, per ogni $i \neq j$, $a \in b$ come al punto **a)**, verificare che la corrispondente matrice $\Sigma_{i,j}(a,b)$ non è hermitiana e discuterne il significato fisico. Successivamente, calcolare $[\Sigma_{i,j}(a,b), \Sigma_{i,j}^{\dagger}(a,b)]$;
 - c): Trovare, per ogni $i \neq j$, autovalori ed autoket della matrice hermitiana $i[\Sigma_{i,j}(a,b), \Sigma_{i,j}^{\dagger}(a,b)]$. [10 punti]
- 2. Si consideri un oscillatore armonico di Hamiltoniana $\hat{H} = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2$. Il suo *n*-esimo stato eccitato è dato da $|n\rangle = \frac{(a^{\dagger})^n}{\sqrt{n!}}|0\rangle$, dove $|0\rangle$ è il suo stato fondamentale ed $n=0,1,2,\ldots$:
 - a): Trovare $\langle n|(\Delta\hat{x})^2|n\rangle$ e $\langle n|(\Delta\hat{p})^2|n\rangle$ per ogni valore di n. Successivamente, verificare che vale il principio di indeterminazione $\langle n|(\Delta\hat{x})^2|n\rangle\langle n|(\Delta\hat{p})^2|n\rangle \geq \hbar^2/4$ e trovare per quale valore di n il prodotto delle indeterminazioni su \hat{x} ed \hat{p} è minimo;
 - **b):** Posto che, al tempo t=0, il sistema sia stato preparato nello stato $|\Psi_n(0)\rangle = \frac{1}{\sqrt{2}}\{|n\rangle + |n+1\rangle\}$, trovare $|\Psi_n(t)\rangle$. Successivamente, usare il risultato ottenuto per trovare, usando il formalismo di Schrödinger, $x_n(t) = \langle \Psi_n(t)|\hat{x}|\Psi_n(t)\rangle$ e $p_n(t) = \langle \Psi_n(t)|\hat{p}|\Psi_n(t)\rangle$;
 - c): Ripetere la seconda parte del punto b) usando lo schema di Heisenberg.

[10 punti]

- 3. Due spin-1/2, \vec{S}_1 , \vec{S}_2 interagiscono secondo l'Hamiltoniana $\hat{H} = A\{S_{1,x}S_{2,x} + S_{1,y}S_{2,y} S_{1,z}S_{2,z}\}$, con A costante reale e positiva:
 - a): Trovare gli autovalori di \hat{H} e scriverne i corrispondenti autoket come combinazioni dei prodotti di autoket di $S_{1,z}, S_{2,z}, |a\rangle_{1,z} |b\rangle_{2,z}$, con $a, b = \pm$;
 - **b):** Supposto che il sistema sia stato preparato, al tempo t=0, nello stato $|\Psi(0)\rangle = |+\rangle_{1,z}|-\rangle_{2,z}$, trovare lo stato del sistema al tempo t, $|\Psi(t)\rangle$;
 - c): (Facoltativo) Usare il risultato del punto \mathbf{b} per determinare il valor medio di $S_{1,z}$ al tempo t. [10 punti]

1.
$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + i \frac{p}{m\omega} \right);$$

2.
$$S_{1,x}S_{2,x} + S_{1,y}S_{2,y} - S_{1,z}S_{2,z} = \vec{S}_1 \cdot \vec{S}_2 - 2S_{1,z}S_{2,z}$$
.

Prima prova scritta: Meccanica Quantistica

18 Marzo 2010

- 1. Siano date la matrice $\mathbf{I}=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$ e le tre matrici di Pauli $\sigma_i,\,i=x,y,z;$
 - a): Trovare quali relazioni debbano intercorrere tra i numeri complessi $\alpha, \beta, \gamma, \delta$ perché la matrice 2×2 , $\mathbf{M} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ sia Hermitiana;
 - b): Dimostrare che una generica matrice Hermitiana 2×2 , \mathbf{M} , si può scrivere nella forma $\mathbf{M}=a_0\mathbf{I}+\sum_{i=x,y,z}a_i\sigma_i$, con a_0,a_i (i=x,y,z) coefficienti reali. Successivamente, trovare l'espressione di a_0 e degli a_i in termini degli elementi della matrice \mathbf{M} ;
 - c): Trovare gli autovalori della matrice Hermitiana $\mathbf{M} = a_0 \mathbf{I} + \sum_{i=x,y,z} a_i \sigma_i$ e determinarne gli autoket come combinazione lineare degli autoket di σ_z , $|+\rangle_z$ e $|-\rangle_z$.

[10 punti]

- 2. Un oscillatore armonico di Hamiltoniana $\hat{H} = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2$ sia stato preparato, al tempo t = 0, nello stato $|\Psi(0)\rangle = c_0|0\rangle + c_2|2\rangle$:
 - a): Determinare c_0 e c_2 sapendo che essi sono entrambi reali e positivi e che $\langle \Psi(0)|\hat{H}|\Psi(0)\rangle = \hbar\omega$;
 - **b):** Trovare lo stato del sistema al tempo t, $|\Psi(t)\rangle$. Successivamente, calcolare $\langle \Psi(t)|\hat{T}|\Psi(t)\rangle$, dove $\hat{T}=\frac{p^2}{2m}$ è l'operatore energia cinetica. Discutere brevemente il risultato ottenuto in relazione a quello che ci si aspetterebbe di trovare su di uno stato stazionario.

[10 punti]

- 3. Due spin-1/2, \vec{S}_1 , \vec{S}_2 interagiscono secondo l'Hamiltoniana $\hat{H} = A\vec{S}_1 \cdot \vec{S}_2 \hbar B(S_{1,z} + S_{2,z})$, con A, B costanti reali e positive.
 - a): Trovare gli autovalori di \hat{H} e scriverne i corrispondenti autoket come combinazioni dei prodotti di autoket di $S_{1,z}, S_{2,z}, |a\rangle_{1,z} |b\rangle_{2,z}$, con $a,b=\pm$. Dire per quale valore del rapporto B/A \hat{H} ammette un autovalore degenere;
 - **b):** Supposto che il sistema sia stato preparato, al tempo t=0, nello stato $|\Psi(0)\rangle = |+\rangle_{1,x}|+\rangle_{2,y}$, con $S_{1,x}|+\rangle_{1,x} = \frac{\hbar}{2}|+\rangle_{1,x}$ e $S_{2,y}|+\rangle_{2,y} = \frac{\hbar}{2}|+\rangle_{2,y}$, trovare lo stato del sistema al tempo t, $|\Psi(t)\rangle$;
 - c): (Facoltativo) Usare il risultato del punto \mathbf{b} per determinare il valor medio di $S_{1,z}$ al tempo t. [10 punti]

Formule utili: $a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + i \frac{p}{m\omega} \right)$.

23.11.2009

Esercizio 1

Una particella di spin 1/2 evolve nel tempo secondo l'hamiltoniana

$$H = -a S_z$$
,

a essendo una costante reale.

- 1) Scrivere l'operatore di evoluzione temporale come combinazione lineare delle matrici di Pauli.
- 2) Al tempo t=0 la particella si trova nell'autostato di S_x all'autovalore $\hbar/2$. Determinare il valore di aspettazione di S_x , S_y e S_z sullo stato evoluto al tempo t.

[12 punti]

Esercizio 2

Sia data l'Hamiltoniana unidimensionale:

$$H = \frac{\hat{p}^2}{2m} + \alpha \hat{x} \,,$$

essendo α una costante reale.

Scrivere le equazioni di Heisenberg per \hat{x} e \hat{p} e risolverle, trovando $\hat{x}_H(t)$ e $\hat{p}_H(t)$. Calcolare quindi i commutatori

$$[\hat{x}_H(t), \hat{x}], [\hat{p}_H(t), \hat{p}].$$

[8 punti]

Esercizio 3

Due particelle di spin 1/2 interagiscano secondo l'hamiltoniana

$$H = -a\,\vec{S_1}\cdot\vec{S_2}\,,$$

essendo a una costante reale. All'istante t=0 il sistema si trova nello stato $|\psi(0)\rangle = |+\rangle |-\rangle$. Determinare lo stato evoluto $|\psi(t)\rangle$ al tempo t e il valore di aspettazione di S_1^z al tempo t.

[10 punti]

$$\hat{J}_{\pm}|j,m>=\hbar\sqrt{(j\mp m)(j\pm m+1)}|j,m\pm 1>$$

17 Settembre 2009

Esercizio 1

Un elettrone in un campo magnetico uniforme diretto lungo l'asse z è descritto dall'Hamiltoniana:

$$H = -\frac{e}{mc}\vec{\sigma} \cdot \vec{B}$$

Scrivere l'operatore di evoluzione temporale U(t) come combinazione lineare dell'identità e delle matrici di Pauli.

Supponendo che al tempo t=0 il sistema si trovi nell'autoket di σ_x con autovalore 1, trovare come varia nel tempo il valore di aspettazione di S_x , usando sia lo schema di Schrödinger che quello di Heisenberg.

[10 punti]

Esercizio 2

Sia data l'Hamiltoniana unidimensionale:

$$H = \frac{\hat{p}^2}{2m} + \alpha \hat{x}^2 + \beta \hat{x} \,,$$

essendo α , β due costanti positive.

Scrivere le equazioni di Heisenberg per \hat{x} e \hat{p} e risolverle, trovando $\hat{x}_H(t)$ e $\hat{p}_H(t)$. Calcolare quindi i commutatori

$$[\hat{x}_H(t), \hat{x}], \quad [\hat{p}_H(t), \hat{p}].$$

[10 punti]

Esercizio 3

Sia dato lo stato dell'oscillatore armonico

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left[|n\rangle + e^{i\alpha(n)} |n+1\rangle \right]$$

Calcolare su tale stato Δx^2 e Δp^2 in funzione di $\alpha(n)$ e verificare che la relazione di Heisenberg è soddisfatta. Per quali valori di $\alpha(n)$ $\Delta x^2 \Delta p^2$ è minimo?

[10 punti]

$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega)), \quad \hat{J}_{\pm}|j,m> = \hbar\sqrt{(j\mp m)(j\pm m+1)}|j,m\pm 1>$$

I prova di recupero

13 luglio 2009

Esercizio 1

Due particelle di spin 1/2 interagiscano secondo l'hamiltoniana

$$H = -a \vec{S_1} \cdot \vec{S_2}$$
,

a essendo una costante positiva.

- 1) Se il sistema al tempo t=0 si trova nello stato $\frac{1}{\sqrt{2}}(|+\rangle|-\rangle+|+\rangle|+\rangle)$, determinare lo stato evoluto al tempo t.
- 2) Determinare il valore di aspettazione di S_1^z e S_2^z al tempo t.

[12 punti]

Esercizio 2

Sia dato un oscillatore armonico unidimensionale di massa m e pulsazione ω . Considerare lo stato

$$|\psi(0)\rangle = e^{-i\hat{p}\frac{l}{\hbar}} |0\rangle,$$

e dimostrare che è autostato dell'operatore \hat{a} , determinandone l'autovalore.

Considerare poi l'evoluto temporale al tempo t

$$|\psi(t)\rangle = e^{-\frac{it\hat{H}}{\hbar}}|\psi(0)\rangle$$

e dimostrare che è ancora autostato di \hat{a} , determinandone l'autovalore.

[8 punti]

Esercizio 3

Sia dato il sistema a due livelli $|0\rangle$, $|1\rangle$ e un'hamiltoniana \hat{H} tale che

$$\hat{H} \mid 0 \rangle = a \mid 0 \rangle + b \mid 1 \rangle, \quad \hat{H} \mid 1 \rangle = a \mid 1 \rangle + b \mid 0 \rangle,$$

con a e b costanti reali. Determinare gli autovalori e gli autovettori di \hat{H} .

All'istante t=0 il sistema si trova nello stato $|\psi(0)\rangle = |0\rangle$. Determinare lo stato evoluto $|\psi(t)\rangle$ al tempo t.

Trovare come variano nel tempo le probabilità $|\langle 0 | \psi(t) \rangle|^2$ e $|\langle 1 | \psi(t) \rangle|^2$.

$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega)), \quad \hat{J}_{\pm}|j,m> = \hbar\sqrt{(j\mp m)(j\pm m+1)}|j,m\pm 1>$$

Prova scritta - I appello

I aprile 2009

1. Due particelle di spin 1/2 interagiscano secondo l'hamiltoniana

$$H = -a\,\vec{S_1}\cdot\vec{S_2} - b\,S_1^z\,,$$

a e b essendo due costanti positive o nulle.

- 1) Supponendo b = 0, determinare autovettori, autovalori e loro degenerazione.
- 2) Sia adesso b > 0. Determinare i nuovi autovalori.

[8 punti]

2. Sia \hat{l}_z la componente z del momento angolare orbitale. Calcolare i seguenti commutatori:

$$[\hat{l}_z \,,\, \hat{p}_x] \,, \quad [\hat{l}_z \,,\, \hat{p}_y] \,, \quad [\hat{l}_z \,,\, \hat{p}_z] \,,$$

dove \hat{p}_x , \hat{p}_y , \hat{p}_z sono le tre componenti dell'impulso.

Calcolare poi le espressioni seguenti:

$$e^{-i\frac{\alpha}{\hbar}\hat{l}_z}\,\hat{p}_x\,e^{i\frac{\alpha}{\hbar}\hat{l}_z}\,,\quad e^{-i\frac{\alpha}{\hbar}\hat{l}_z}\,\hat{p}_y\,e^{i\frac{\alpha}{\hbar}\hat{l}_z}\,,\quad e^{-i\frac{\alpha}{\hbar}\hat{l}_z}\,\hat{p}_z\,e^{i\frac{\alpha}{\hbar}\hat{l}_z}\,.$$

Infine, dato il ket $|p_x, p_y, p_z\rangle$, autoket, rispettivamente, di \hat{p}_x , \hat{p}_y , \hat{p}_z agli autovalori p_x , p_y , p_z , dimostrare che il ket

$$e^{i\frac{\alpha}{\hbar}\hat{l}_z}|p_x,p_y,p_z\rangle$$

è ancora autoket di $\hat{p}_x,\,\hat{p}_y,\,\hat{p}_z$ e determinarne i rispettivi autovalori.

[10 punti]

3. Sia dato un oscillatore armonico unidimensionale di massa m e pulsazione ω . Dimostrare che per un generico autoket dell'hamiltoniana $|n\rangle$ vale l'uguaglianza

$$\langle n \mid \hat{T} \mid n \rangle = \langle n \mid \hat{V} \mid n \rangle,$$

essendo \hat{T} e \hat{V} rispettivamente l'energia cinetica e potenziale.

Considerare adesso il caso di un potenziale generico unidimensionale:

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}).$$

Calcolare il commutatore $[\hat{x}\hat{p},\hat{H}]$ e usare tale risultato per dimostrare che

$$2\langle E \mid \hat{T} \mid E \rangle = \langle E \mid \hat{x}V'(\hat{x}) \mid E \rangle,$$

essendo $\mid E \rangle$ un autoket dell'hamiltoniana.

[6 punti]

4. Sia data una hamiltoniana unidimensionale

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}).$$

1) Dimostrare la relazione di indeterminazione

$$\sigma_H^2 \sigma_x^2 \ge \frac{\hbar^2}{4m^2} |\langle \hat{p} \rangle|^2$$
.

- 2) Verificare tale relazione sugli stati stazionari dell'oscillatore armonico.
- 3) Nel caso di Vgenerico verificare e commentare tale relazione per gli stati stazionari di $\hat{H}.$

[6 punti]

(1)
$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$
; (2) $\hat{J}_{\pm}|j,m\rangle = \hbar\sqrt{(j \mp m)(j \pm m + 1)}|j,m \pm 1\rangle$.

Prova scritta - appello straordinario

20 novembre 2008

1. Dimostrare che le matrici di Pauli, σ_i , i = 1, 2, 3, insieme con l'identità I, formano una base per tutte le matrici 2×2 ad elementi complessi.

Ridurre, quindi, a combinazione lineare delle matrici di Pauli e dell'identità le seguenti matrici 2×2 :

$$(c_1\sigma_1 + c_2\sigma_2 + c_3\sigma_3)^2$$
, $c_1, c_2, c_3 \in \mathbb{C}$;
 e^{σ_i} , $i = 1, 2, 3$;
 $e^{i(\sigma_1 + \sigma_2)}$.

[10 punti]

2. Un oscillatore armonico si trovi nello stato

$$|\psi(0)\rangle = \sum_{n} c_n |n\rangle$$
,

dove $|n\rangle$ è l'autostato dell'Hamiltoniana con energia $E_n=(n+1/2)\hbar\omega, n=0,1,2,\ldots$

Dire quanto vale la probabilità P che una misura dell'energia su $|\psi(0)\rangle$ dia un risultato maggiore di $2\hbar\omega$.

Determinare lo stato $|\psi(0)\rangle$ utilizzando le seguenti informazioni:

- P = 0
- normalizzazione ad 1
- $\langle \psi(0)|H|\psi(0)\rangle = \hbar\omega$
- $\langle \psi(0)|x|\psi(0)\rangle = \frac{1}{2}\sqrt{\frac{\hbar}{m\omega}}$

Determinare lo stato evoluto $|\psi(t)\rangle$ all'istante $t=\pi/\omega$.

[10 punti]

3. Si trovino le matrici rappresentative degli operatori L_x ed L_y sugli stati con l=1 rispetto alla base data dagli autostati di L_z , $\{|1,1\rangle, |1,0\rangle, |1,-1\rangle\}$.

Data l'Hamiltoniana

$$H = A(L_x^2 - L_y^2) ,$$

dove A è una costante reale, se ne trovino autovalori ed autoket.

Si determini, infine, l'evoluzione temporale dello stato $|1,-1\rangle$.

[10 punti]

(1)
$$\hat{L}_{\pm}|l,m\rangle = \hbar\sqrt{(l\mp m)(l\pm m+1)}|l,m\pm 1\rangle$$

(2)
$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$

Prova scritta - II appello di recupero

11 settembre 2008

- 1. (a) Calcolare il commutatore $[\hat{x}, f(\hat{p})]$, dove f è una funzione arbitraria.
 - (b) Usando il risultato precedente, calcolare $e^{-if(\hat{p})}$ \hat{x} $e^{if(\hat{p})}$.
 - (c) Calcolare il valor medio di \hat{x} sullo stato $e^{if(\hat{p})}|\alpha\rangle$, dove $|\alpha\rangle$ è un generico ket ed $f(\hat{p})$ è un operatore hermitiano.
 - (d) Dare un'interpretazione fisica dei risultati ottenuti nel caso particolare in cui $f(\hat{p}) = \hat{p}a/\hbar$, con a costante reale.

[10 punti]

2. (a) Un oscillatore armonico si trovi nello stato

$$|\psi\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle + |1\rangle \Big) .$$

Determinare come cambia nel tempo il valor medio su questo stato dell'operatore energia potenziale, $\hat{U} = m\omega^2\hat{x}^2/2$, usando **sia** lo schema di Schrödinger, **sia** quello di Heisenberg. [10 punti]

3. Due particelle, una di spin 1/2, l'altra di spin 1, interagiscano secondo l'Hamiltoniana

$$\hat{H} = A\hat{\vec{S}}_1 \cdot \hat{\vec{S}}_2 + B\hbar(\hat{S}_{1,z} + \hat{S}_{2,z}) ,$$

dove A e B sono costanti reali. Se inizialmente il sistema si trova nello stato $|0\rangle|-\rangle$, trovare la probabilità che, ad un generico istante di tempo t, il sistema si trovi nello stato $|0\rangle|+\rangle$.

[10 punti]

(1)
$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$
; (2) $\hat{J}_{\pm}|j,m\rangle = \hbar\sqrt{(j \mp m)(j \pm m + 1)}|j,m \pm 1\rangle$.

Prova scritta - I appello di recupero

9 luglio 2008

- 1. (a) Calcolare il commutatore $[\hat{p}, f(\hat{x})]$, dove f è una funzione arbitraria.
 - (b) Usando il risultato precedente, calcolare $e^{-if(\hat{x})} \hat{p} e^{if(\hat{x})}$.
 - (c) Usando (b) calcolare $e^{-if(\hat{x})} \hat{p}^n e^{if(\hat{x})}$, con n intero.
 - (d) (Facoltativo) Generalizzare il risultato all'espressione $e^{-if(\hat{x})}$ $g(\hat{p})$ $e^{if(\hat{x})}$, dove g è una funzione arbitraria.

[10 punti]

2. (a) Un sistema unidimensionale ha Hamiltoniana della forma

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}) \ .$$

Si scriva l'equazione del moto di Heisenberg per l'operatore $\hat{x}\hat{p}$ e si dimostri che

$$\frac{d}{dt}\langle \hat{x}\hat{p}\rangle = 0 ,$$

se il valor medio è calcolato su un autostato dell'Hamiltoniana.

(b) Si deduca da questo fatto che, su un autostato dell'Hamiltoniana,

$$\left\langle \frac{\hat{p}^2}{m} \right\rangle = \left\langle \hat{x} \frac{dV}{dx} \right\rangle .$$

(c) Usando il risultato precedente, si determini il valor medio dell'energia cinetica e quello dell'energia potenziale su un generico stato stazionario di un oscillatore armonico unidimensionale.

[10 punti]

3. Un sistema formato da due particelle distinte di spin 1/2 interagisca secondo l'Hamiltoniana

$$\hat{H} = A\hat{\vec{S}}_1 \cdot \hat{\vec{S}}_2 \; ,$$

dove A è una costante reale. Se inizialmente il sistema si trova nello stato $|+\rangle|-\rangle$, trovare la probabilità che, ad un generico istante di tempo t, la misura della componente z dello spin della prima particella dia come risultato $+\hbar/2$.

[10 punti]

(1)
$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$
; (2) $\hat{J}_{\pm}|j,m\rangle = \hbar\sqrt{(j \mp m)(j \pm m + 1)}|j,m \pm 1\rangle$.

Prova scritta - appello straordinario

23 giugno 2008

1. Si calcolino i seguenti commutatori:

$$[\hat{x}, e^{i\hat{p}_x b/\hbar}], \qquad [\hat{p}_x, e^{i\hat{x}c/\hbar}],$$

dove b e c sono costanti reali.

[6 punti]

- 2. Costruire uno stato di oscillatore armonico unidimensionale di pulsazione ω per il quale valga che
 - la probabilità che una misura di energia dia $\hbar\omega/2$ sia pari a 1/3;
 - la probabilità che una misura di energia dia $3\hbar\omega/2$ sia pari a 2/3;
 - $\bullet\,$ il valor medio di \hat{x} sia pari a $\frac{1}{3}\sqrt{\frac{2\hbar}{m\omega}}.$

[8 punti]

3. Siano $|1\rangle$ e $|2\rangle$ gli elementi di una base ortonormale di un sistema. L'Hamiltoniana del sistema agisce come segue sugli elementi della base:

$$\hat{H}|1\rangle = \alpha|2\rangle$$
, $\hat{H}|2\rangle = \alpha|1\rangle$,

con α costante reale. Se il sistema al tempo t=0 si trova nello stato $|1\rangle$, determinare come varia nel tempo la probabilità che il sistema si trovi nello stato $|2\rangle$. [8 punti]

4. Si consideri un sistema di due particelle, una con spin $S_1 = 1/2$, l'altra con spin $S_2 = 1$. Se la prima particella si trova nello stato $|-\rangle$ e la seconda nello stato $|1,1\rangle$, dire quali sono i possibili risultati della misura di \vec{S}^2 e di S_z (dove \vec{S} è lo spin totale) con le relative probabilità. [8 punti]

(1)
$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$
; (2) $\hat{J}_{\pm}|j,m\rangle = \hbar\sqrt{(j \mp m)(j \pm m + 1)}|j,m \pm 1\rangle$.

Prova scritta - I appello

I aprile 2008

1. (a) Calcolare i seguenti commutatori:

$$[\hat{l}_z, \hat{x}] , \qquad [\hat{l}_z, \hat{y}] , \qquad [\hat{l}_z, \hat{z}] ,$$

dove \hat{l}_z è la terza componente del momento angolare orbitale di una particella.

(b) Verificare che lo stato

$$\left(1 - i\hat{l}_z \frac{\varepsilon}{\hbar}\right) |x', y', z'\rangle ,$$

dove ε è una costante reale adimensionale infinitesima, è autostato degli operatori \hat{x} , \hat{y} , \hat{z} (con quali autovalori?).

[10 punti]

2. (a) Un sistema unidimensionale ha l'Hamiltoniana della forma

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x}) \ .$$

Si scriva l'equazione del moto di Heisenberg per l'operatore $\hat{x}\hat{p}$.

(b) Nel caso particolare in cui \hat{H} sia l'Hamiltoniana di un oscillatore armonico unidimensionale, si calcoli, lavorando nello schema di Heisenberg,

$$\frac{d}{dt}\langle 0|\hat{x}\hat{p}|0\rangle$$
,

dove $|0\rangle$ è lo stato fondamentale.

[10 punti]

3. Un sistema formato da una particella di spin $S_1=1$ e da una di spin $S_2=1/2$ sia soggetto all'Hamiltoniana

$$\hat{H} = A + \frac{B}{\hbar^2} \hat{\vec{S}}_1 \cdot \hat{\vec{S}}_2 ,$$

dove A e B sono costanti reali. Se inizialmente il sistema si trova nello stato $|1,-1\rangle|+\rangle$, trovare lo stato evoluto ad un generico istante di tempo t. Calcolare sullo stato evoluto il valor medio di \hat{H} e di $\hat{S}_{1,x}$. [10 punti]

(1)
$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$
; (2) $\hat{J}_{\pm}|j,m\rangle = \hbar\sqrt{(j \mp m)(j \pm m + 1)}|j,m \pm 1\rangle$.

Prova scritta - appello straordinario

22 novembre 2007

1. Dimostrare che

$$[x, f(p)] = i\hbar \frac{df(p)}{dp} .$$

Usare questa informazione per calcolare il commutatore $[\hat{a}, e^{ip\lambda}]$, dove \hat{a} è l'operatore di discesa per un oscillatore armonico unidimensionale.

Dimostrare infine che $e^{ip\lambda}|0\rangle$, con $|0\rangle$ stato fondamentale dell'oscillatore armonico e λ costante, è un autostato dell'operatore \hat{a} .

[8 punti]

2. Un oscillatore armonico unidimensionale si trova nello stato

$$|\psi\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle + e^{i\alpha} |1\rangle \Big),$$

con α costante reale. Trovare il valore di α per cui è massimo $\langle \hat{x} \rangle$. Per quel valore di α determinare poi $\langle \hat{x}(t) \rangle$.

[6 punti]

3. Un elettrone (spin 1/2) ha spin orientato lungo la bisettrice del I e del III quadrante del piano xy. Scrivere lo stato di spin come combinazione degli autostati di \hat{S}_z .

[7 punti]

4. L'interazione di spin-orbita di una particella di spin 1/2 e momento angolare orbitale l=1 è della forma

$$\hat{H} = A\hat{\vec{s}} \cdot \hat{\vec{l}}$$
.

Trovare lo spettro energetico e gli autostati di \hat{H} . Se lo stato iniziale è dato da

$$|\psi(t=0)\rangle = |1,0\rangle|+\rangle$$
,

trovare lo stato evoluto $|\psi(t)\rangle$ e calcolare la probabilità che, ad un generico istante di tempo t, il risultato di una misura sia che il sistema si trovi nello stato iniziale. [9 punti]

(1)
$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$
.

Prova scritta - II prova di recupero

13 settembre 2007

- 1. Siano $A \in B$ due operatori per i quali valga [A, B] = c, con c costante reale.
 - (i) Calcolare $[A^n, B]$, con n intero positivo maggiore di 1, e [f(A), B], con f funzione analitica;
 - (ii) dimostrare che $e^{\lambda A}Be^{-\lambda A}=B+\lambda\,c$ (λ costante reale). [7 punti]
- 2. Un oscillatore armonico unidimensionale si trova nello stato

$$|\psi\rangle = \frac{1}{\sqrt{2}} \Big(|0\rangle + e^{i\alpha} |1\rangle \Big),$$

con α costante reale. Calcolare su questo stato Δx^2 e trovare i valori di α per cui prende valore minimo. Ripetere lo stesso calcolo per Δp^2 . Verificare infine che, per i valori di α trovati, $\Delta x^2 \Delta p^2$ soddisfa la relazione di indeterminazione di Heisenberg. [7 punti]

3. L'Hamiltoniana per una particella di spin 1/2 sia della forma

$$\hat{H} = A(1 + \sigma_x) \; ,$$

dove A è una costante reale e σ_x è la prima matrice di Pauli. Se la particella si trova a t=0 nello stato di spin $|+\rangle \equiv |S_z=+\hbar/2\rangle$, determinarne l'evoluzione temporale. Calcolare la probabilità in funzione del tempo che il risultato della misura di S_z sia $+\hbar/2$. [8 punti]

4. L'Hamiltoniana di interazione di un sistema elettrone-positrone (entrambi particelle di spin 1/2) con un campo magnetico esterno è della forma

$$\hat{H} = A(\hat{S}_{1,z} - \hat{S}_{2,z})$$
.

Trovare lo spettro energetico e gli autostati di \hat{H} . Se lo stato iniziale è dato da

$$|\psi(t=0)\rangle = \frac{1}{\sqrt{2}} \Big(|+\rangle|-\rangle + |-\rangle|+\rangle \Big),$$

trovare lo stato evoluto $|\psi(t)\rangle$ e calcolare la probabilità che, ad un generico istante di tempo t, il risultato di una misura sia che il sistema si trovi nello stato iniziale. [8 punti]

(1)
$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$
.

Meccanica quantistica Prova scritta - I prova di recupero

4 luglio 2007

1. Una particella soggetta a potenziale armonico unidimensionale con pulsazione ω si trova nello stato

$$|\psi\rangle = A|0\rangle + B|1\rangle$$
,

dove A e B sono costanti reali. Trovare i valori di A e B che massimizzano e quelli che minimizzano $\langle \hat{x} \rangle$.

Fissati $A \in B$ ai valori che massimizzano $\langle \hat{x} \rangle$, si calcolino i valori medi dell'energia cinetica e dell'energia potenziale sullo stato $|\psi\rangle$. [10 punti]

2. Un elettrone che a t=0 si trova in quiete nello stato di spin $|+\rangle \equiv |S_z=+\hbar/2\rangle$ viene sottoposto ad un campo magnetico uniforme $\vec{B}=(B,0,0)$. Ricordando che l'Hamiltoniana di interazione è data da

$$\hat{H} = -\frac{e}{mc}\hat{\vec{S}} \cdot \vec{B} ,$$

determinare l'evoluzione temporale dello stato dell'elettrone. Calcolare la probabilità in funzione del tempo che il risultato della misura di S_z sia $+\hbar/2$. Ripetere il calcolo per la misura di S_y . [10 punti]

3. L'interazione spin-spin tra due particelle distinte di spin 1/2 sia descritta dalla Hamiltoniana

$$\hat{H} = A(\hat{S}_{1,z} + \hat{S}_{2,z}) + B(\hat{\vec{S}}_1 \cdot \hat{\vec{S}}_2) .$$

Trovare lo spettro energetico e gli autostati di \hat{H} . Dire per quali valori di A e B tale spettro è degenere. Se lo stato iniziale è dato da

$$|\psi(t=0)\rangle = |+\rangle|-\rangle$$
,

trovare lo stato evoluto $|\psi(t)\rangle$. [10 punti]

(1)
$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$
; (2) $\hat{J}_{\pm}|j,m\rangle = \hbar\sqrt{(j \mp m)(j \pm m + 1)}|j,m \pm 1\rangle$.

Prova scritta - I appello

30 marzo 2007

- 1. Una particella soggetta a potenziale armonico unidimensionale con pulsazione ω si trova in uno stato sul quale la misura di energia può dare con uguale probabilità $\hbar\omega/2$ e $3\hbar\omega/2$. Determinare tale stato richiedendo che su esso sia massimo $\langle \hat{p} \rangle$. Supposto che quello ottenuto sia lo stato del sistema a t=0, se ne determini l'evoluto al tempo t. [8 punti]
- 2. (a) Si scriva la matrice rappresentativa degli operatori \hat{S}_x , \hat{S}_y e \hat{S}_z nello spazio degli stati di spin 1, rispetto alla base $\{|1,1\rangle, |1,0\rangle, |1,-1\rangle\}$ formata dagli autostati di $\hat{\vec{S}}^2$ e \hat{S}_z . Si trovino poi gli autovettori di \hat{S}_x . [4 punti]
 - (b) Una particella che a t=0 si trova in quiete nello stato di spin $|S=1, S_x=1\rangle$ viene sottoposta ad un campo magnetico uniforme $\vec{B}=(0,0,B)$. Detta

$$\hat{H} = -\mu \hat{\vec{S}} \cdot \vec{B}$$

l'Hamiltoniana del sistema, trovare la probabilità che la particella si trovi nello stato iniziale dopo un intervallo di tempo t. [5 punti]

- (c) Per ciascuno degli autostati di \hat{S}_z si trovino i possibili risultati della misura di S_x con la relativa probabilità. Dire su quale di questi stati è massimo il valore della dispersione di S_x e spiegarne il motivo. [5 punti]
- 3. L'interazione spin-spin tra una particella di spin 1 ed una di spin 1/2 sia descritta dalla Hamiltoniana

$$\hat{H} = -a(\hat{\vec{S}}_1 \hat{\vec{S}}_2) \ .$$

Se lo stato iniziale è dato da

$$|\psi(t=0)\rangle = |1,1\rangle|-\rangle$$
,

trovare lo stato evoluto $|\psi(t)\rangle$. Calcolare in funzione del tempo

$$\langle \psi(t)|\hat{S}_{1,z}|\psi(t)\rangle$$
.

[8 punti]

(1)
$$\hat{a} = \sqrt{m\omega/(2\hbar)}(\hat{x} + i\hat{p}/(m\omega))$$
; (2) $\hat{J}_{\pm}|j,m\rangle = \hbar\sqrt{(j \mp m)(j \pm m + 1)}|j,m \pm 1\rangle$.

Meccanica quantistica Prova scritta - appello straordinario

21 novembre 2006

1. Dato che

$$[\hat{A}, \hat{B}] = 1; \quad [\hat{A}, \hat{B}^2] = c \,\hat{B},$$

dove c è un numero, trovate il valore di c.

2. Calcolate la dispersione $\Delta \hat{l}_x^2$ su uno stato di definito momento angolare $|l,m\rangle$ e dite per quale valore di m essa è massima.

Note utili:

$$\hat{l}_{+}|l,m\rangle = \hbar\sqrt{(l-m)(l+m+1)}|l,m+1\rangle ,$$

$$\hat{l}_-|l,m\rangle = \hbar\sqrt{(l+m)(l-m+1)}|l,m-1\rangle .$$

3. Un sistema quantistico a due livelli sia descritto dalla Hamiltoniana

$$\hat{H} = H_0 \left(\begin{array}{cc} 1 & a \\ a & 1 \end{array} \right) .$$

- (a) Trovate lo spettro energetico di questo sistema e costruite gli autovettori normalizzati. Per quali valori di a questo spettro è degenere?
- (b) Trovate l'evoluzione temporale $|\psi(t)\rangle$ dello stato che inizialmente t=0era

$$|\psi(t=0)\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}.$$

- (c) Trovate i valori di a per i quali sia nulla la probabilità che al tempo $t = \pi \hbar/H_0$ lo stato $|\psi(t)\rangle$ si trovi nello stato iniziale.
- 4. L'interazione spin-spin tra due particelle di spin 1/2 sia descritta dalla Hamiltoniana

$$\hat{H} = a(\hat{\vec{s}_1}\hat{\vec{s}_2}).$$

Considerate lo stato iniziale

$$|\psi(t=0)\rangle = |+\rangle|-\rangle$$
.

Trovate l'evoluzione temporale di questo stato. Calcolate in funzione del tempo i seguenti valori medi:

$$\langle \psi(t)|\hat{s}_{1,z}|\psi(t)\rangle$$
, $\langle \psi(t)|\hat{s}_{2,z}|\psi(t)\rangle$, $\langle \psi(t)|\hat{s}_{1,z}\hat{s}_{2,z}|\psi(t)\rangle$.

Meccanica quantistica, III anno

Prova scritta

11 settembre 2006

1. Considerate due operatori \hat{A} e \hat{B} che agiscono sui vettori di una base $\{|n\rangle\}, n = 0, 1, 2, \ldots$ nel seguente modo:

$$\hat{A}|n\rangle = |n-1\rangle$$
 per $n > 0$, $\hat{A}|0\rangle = 0$
 $\hat{B}|n\rangle = |n+1\rangle$.

Dimostrate che $\hat{A}\hat{B}=1$ e che $[\hat{A},\,\hat{B}]=\hat{P}_0$ è il proiettore sullo stato $|0\rangle$.

2. Un sistema quantistico a due livelli sia descritto dalla Hamiltoniana

$$\hat{H} = H_0 \left(\begin{array}{cc} 3 & 2 \\ 2 & 0 \end{array} \right) \, .$$

- (a) Trovate lo spettro energetico di questo sistema e costruite gli autovettori normalizzati. È questo spettro degenere?
- (b) Trovate l'evoluzione temporale $|\psi(t)\rangle$ dello stato che inizialmente t=0era

$$|\psi(t=0)\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}.$$

Qual è la probabilità di ritrovare in $|\psi(t)\rangle$ lo stato iniziale?

3. L'interazione spin-spin tra due neutroni sia descritta dalla Hamiltoniana

$$\hat{H} = -a(\hat{\vec{S}}\hat{\vec{s}_1}) \,,$$

dove \hat{S} è lo spin totale. Considerate lo stato iniziale

$$|\psi(t=0)\rangle = |+\rangle|-\rangle$$
.

Trovate l'evoluzione temporale di questo stato. Determinate come dipende dal tempo il valore medio della proiezione s_{1z} del primo spin,

$$s_{1z}(t) = \langle \psi(t) | \hat{s}_{1z} | \psi(t) \rangle$$
.

Meccanica quantistica, III anno

Prova scritta

10 luglio 2006

1. Tre operatori hermitiani $\hat{A}, \, \hat{B}, \, \hat{C}$ soddisfano le sequenti regole di commutazione:

$$[\hat{A}, \hat{B}] = i\hat{C}, \quad [\hat{A}, \hat{C}] = -i\hat{B}.$$

Trovate il valore del commutatore $[\hat{A}, \hat{B}^2 + \hat{C}^2]$.

2. Un sistema quantistico a due livelli sia descritto dalla Hamiltoniana

$$\hat{H} = 2H_0|1\rangle\langle 1| \ + \ 2H_0|2\rangle\langle 2| \ + \ H_0|1\rangle\langle 2| \ + \ H_0|2\rangle\langle 1| \,,$$

dove stati $|1\rangle$ e $|2\rangle$ sono gli autostati normalizzati di una grandezza osservabile A con gli autovalori +a e -a, rispettivamente.

- (a) Trovate lo spettro energetico di questo sistema e costruite gli autovettori normalizzati. È questo spettro degenere?
- (b) Verificate se l'operatore \hat{A} commuta con l'Hamiltoniana.
- (c) Trovate l'evoluzione temporale $|\psi(t)\rangle$ dello stato che inizialmente t=0 era $|1\rangle$. Come dipende dal tempo il valore medio di A, $a(t)=\langle \psi(t)|\hat{A}|\psi(t)\rangle$, in questo stato?
- 3. L'interazione spin-spin tra due neutroni sia descritta dalla Hamiltoniana

$$\hat{H} = -a[\hat{\vec{s}_1}^2 + (\hat{\vec{s}_1}\hat{\vec{s}_2}) + \hat{\vec{s}_2}^2].$$

Considerate lo stato iniziale

$$|\psi(t=0)\rangle = |+\rangle|-\rangle$$
.

Trovate l'evoluzione temporale di questo stato. Determinate come dipende dal tempo il valore medio della proiezione s_{1z} del primo spin,

$$s_{1z}(t) = \langle \psi(t) | \hat{s}_{1z} | \psi(t) \rangle$$
.

Meccanica quantistica, III anno

Prova scritta

29 marzo 2006

1. Un sistema quantistico a tre livelli sia descritto dalla Hamiltoniana

$$\hat{H} = H_0 \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right) \, .$$

- (a) Trovate lo spettro energetico di questo sistema e costruite gli autovettori normalizzati. È questo spettro degenere?
- (b) Trovate evoluzione temporale $|\psi(t)\rangle$ dello stato che inizialmente era localizzato sul primo livello:

$$|\psi(t=0)\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$
.

Qual è la probabilità di ritrovare in $|\psi(t)\rangle$ lo stato iniziale?

2. Trovate l'incertezza della energia potenziale $\langle 0|(\Delta \hat{U})^2|0\rangle$ nello stato fondamentale dell'oscillatore armonico monodimensionale.

Suggerimento:

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} (\hat{a} + \hat{a}^{\dagger}) \,.$$

3. L'interazione spin-spin tra due neutroni sia descritto dalla Hamiltoniana

$$\hat{H} = -a(\hat{\vec{s_1}}\hat{\vec{s_2}}).$$

Considerate lo stato iniziale

$$|\psi(t=0)\rangle = |+\rangle_x|+\rangle_z$$
,

cioè lo stato in cui il primo neutrone è polarizzato lungo l'asse x (con proiezione positiva) mentre il secondo è polarizzato lungo l'asse z. Trovate l'evoluzione temporale di questo stato. Dimostrate che all'istante $\tau=\pi\hbar/a$ lo stato può essere rappresentato come

$$|\psi(t=\tau)\rangle = |+\rangle_z|+\rangle_x$$
.

Meccanica quantistica Prova scritta intermedia

9 febbraio 2006

- 1. Considerate la famiglia di operatori $\hat{K}_a = \hat{x} + a\hat{p}$, dove a è una costante reale.
 - (a) Trovate il comutatore $[\hat{K}_a, \hat{K}_b]$
 - (b) Trovate l'operatore \hat{K}_c che comuta con $\hat{K}_a + \hat{K}_b$.
- 2. Un sistema quantistico a tre livelli sia descritto dalla Hamiltoniana

$$\hat{H} = a \sum_{i,j=1}^{3} |i\rangle\langle j|$$
.

- (a) Trovate lo spettro energetico di questo sistema e costruite gli autovettori normalizzati. È questo spettro degenere?
- (b) Osservate che la Hamiltoniana è simmetrica sotto lo scambio $|1\rangle \leftrightarrow |3\rangle$. Dimostrate che l'operatore \hat{T} che realizza questo scambio commuta con la Hamiltoniana.
- (c) Controllate se gli autovettori della Hamiltoniana già trovati siano pure autovettori di \hat{T} . Se no, costruite un base comune di autovettori di entrambi gli operatori e trovate gli autovalori dell'operatore \hat{T} .

Prova scritta

3 Novembre 2005

1. Dato che

$$[\hat{A}^2, \hat{B}] = c_1; \quad [\hat{A}, \hat{B}^2] = c_2,$$

dove c_i sono numeri, trovate i valori di c_1 e c_2 .

Suggerimento: Conviene cominciare dal commutatore $[\hat{A}^2, \hat{B}^2]$.

2. Una particella soggetta a potenziale armonico unidimensionale si trova nello stato

$$|\psi_{\alpha}\rangle = C(|0\rangle + \alpha|1\rangle + \alpha^2|2\rangle),$$
 (1)

dove α è un numero complesso e C è la costante di normalizzazione.

- (a) Trovate il valore di C.
- (b) Trovate l'energia della particella in questo stato.
- (c) Dimostrate che sotto l'evoluzione temporale $|\psi_{\alpha}\rangle$ conserva la sua forma (1) salvo che il parametro α cambia periodicamente. Trovate $\alpha(t)$.
- 3. Un sistema quantistico di due particelle di spin $\frac{1}{2}$ è descritto dall'hamiltoniana

$$\hat{H} = -(\hat{\vec{S}}\vec{a})^2,$$

dove \hat{S} è l'operatore di spin totale, \vec{a} è un vettore fisso. Trovate lo spettro energetico di questo sistema. È questo spettro degenere? Come dipende da $|\vec{a}|$ la molteplicità di degenerazione?

Suggerimento: Conviene scegliere l'asse z lungo la direzione di \vec{a} .

Meccanica quantistica Prova scritta - II appello

6 Settembre 2005

1. Dato che

$$[\hat{A}, \hat{B}] = c_1; \quad [\hat{A}^2, \hat{B}] = c_2,$$

dove c_i sono numeri, trovate i valori di c_1 e c_2 .

2. Una particella soggetta a potenziale armonico unidimensionale si trova nello stato

$$|\psi_{\alpha}\rangle = C\left(|0\rangle + \alpha|1\rangle + \alpha^2|2\rangle + \alpha^3|3\rangle + \ldots\right),$$
 (1)

dove α è un numero complesso e C è la costante di normalizzazione.

- (a) Trovate il valore di C.
- (b) Trovate l'energia della particella in questo stato.
- (c) Dimostrate che sotto l'evoluzione temporale $|\psi_{\alpha}\rangle$ conserva la sua forma (1) salvo che il parametro α cambia periodicamente. Trovate $\alpha(t)$.

Formule utili:

$$1 + x + x^{2} + x^{3} + x^{4} + \dots = \frac{1}{1 - x}; \quad x + 2x^{2} + 3x^{3} + 4x^{4} + \dots = \frac{x}{(1 - x)^{2}}.$$

3. Un sistema quantistico di due particelle di spin $\frac{1}{2}$ è descritto dall'hamiltoniana

$$\hat{H} = -H_0(\hat{\vec{S}} - \vec{a})^2,$$

dove \hat{S} è l'operatore di spin totale, \vec{a} è un vettore fisso e H_0 è una costante positiva.

- (a) Trovate lo spettro energetico di questo sistema.
- (b) È questo spettro degenere? Come dipende da $|\vec{a}|$ la molteplicità di degenerazione?
- (c) Quale valore di $|\vec{a}|$ genera uno spettro equispaziato?
- (d) Trovate l'evoluzione nel tempo dello stato $|\psi\rangle$, il cui stato iniziale è $|\psi(t=0)\rangle = |+\rangle|-\rangle$.

Suggerimento: Conviene scegliere l'asse z lungo la direzione di \vec{a} .

Meccanica quantistica Prova scritta - I appello

7 Aprile 2005

- 1. Qual è l'operatore \hat{A} , costruito a partire dagli operatori \hat{x} e \hat{p} , per il quale i commutatori con \hat{x} e con \hat{p} siano proporzionali? Cercate di rappresentare la risposta nella forma più generale. [5 punti]
- 2. Calcolate i valori medi degli operatori $\hat{\ell}_x$, $\hat{\ell}_y$, e $\hat{\ell}_z$ sul seguente stato di particella con momento angolare 1:

$$|\psi
angle = rac{1}{\sqrt{2}}(|1,1
angle + |1,0
angle)\,.$$

[5 punti]

3. Un sistema quantistico di due particelle di spin $\frac{1}{2}$ è descritto dall'hamiltoniana

$$\hat{H} = -H_0(\vec{S}^2 - 2S_z^2) \,,$$

dove \vec{S} è l'operatore di spin totale e H_0 è una costante positiva.

- (a) Trovate lo spettro energetico di questo sistema. È questo spettro degenere?
- (b) Trovate l'evoluzione nel tempo dello stato $|\psi\rangle$, il cui stato iniziale è $|\psi(t=0)\rangle = |+\rangle|-\rangle$. [6 punti]
- 4. Calcolate il commutatore $[\hat{x}(t), \hat{x}(0)]$ per una particella sotto il campo della forza uniforme U(x) = -F x. [6 punti]
- 5. Per una particella soggetta a potenziale armonico unidimensionale, trovate gli autovalori dell'operatore

$$\hat{O} = \hat{a}^{\dagger} \hat{a} - \lambda \, \hat{a}^{\dagger} - \lambda^* \, \hat{a} \,,$$

dove \hat{a}^{\dagger} e \hat{a} sono gli usuali operatori di creazione e distruzione, e λ è una costante complessa.

Suggerimento: considerate gli operatori traslati $\hat{p}' = \hat{p} + \Delta p$ e $\hat{x}' = \hat{x} + \Delta x$. [8 punti]